Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Sci Rep. 2017 Aug 11;7(1):7911. doi: 10.1038/s41598-017-06918-1.
Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, respectively. Glycerol was identified as the optimal carbon source for the highest BC production. The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the physiology and BC production of K. nataicola.
细菌纤维素(BC)因其高纯度和高强度而被广泛应用于各个行业。尽管木醋杆菌是生产 BC 的代表性物种,但它的细胞内代谢导致 BC 分泌的机制尚不清楚。在本研究中,我们构建了产纤维素的木醋杆菌菌株 RZS01 的基因组规模代谢网络,以了解其代谢行为。该模型 iHZ771 包含 771 个基因、2035 种代谢物和 2014 个反应。基于约束的分析用于对关键的细胞内途径进行特征描述和评估。分析表明,在最小培养基和复杂培养基中,细胞生长分别需要总共 71 个和 30 个基因。甘油被确定为产生最高 BC 产量的最佳碳源。代谢调整最小化算法确定了 8 个基因作为 BC 过度生产的潜在靶点。总的来说,模型 iHZ771 被证明是理解木醋杆菌生理学和 BC 生产的有用平台。