Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
Water Res. 2017 Nov 1;124:496-503. doi: 10.1016/j.watres.2017.08.004. Epub 2017 Aug 5.
In this study, seven model compounds containing typical functional groups (phenolic and carboxylic groups) present in nature organic matter (NOM) were used to ascertain the nature of the characteristic bands in differential absorbance spectra (DAS) of NOM that are induced by metal ion binding. Some similarities were found between the DAS of the examined model compounds, caffeic acid, ferulic acid, sinapic acid, terephthalic acid, isophthalic acid, esculetin and myricetin and those of NOM. The binding of Cu(II) with carboxylic group might produce two peaks, A1 and A2, while the binding of Cu(II) with phenolic group might produce all four Gaussian peaks, from A1 to A4 displayed in the DAS of NOM. The UV-visible spectra predicted using time-dependent density functional theory (TD-DFT)-based methods met well with the experimental DAS of model compounds at different stages of Cu(II) binding. It demonstrates that the features in absorbance spectra are chiefly caused by HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) transitions in the molecule and that the appearance of peaks in DAS reflects the changes of the molecular orbitals around reactive functional groups in a molecule before and after metal ion binding. The basis of the DAS features of NOM that are induced by metal ion binding could be identified primarily by the frontier molecular orbital theory.
在这项研究中,使用了七种含有天然有机物(NOM)中典型官能团(酚基和羧基)的模型化合物,以确定金属离子结合诱导的 NOM 差示吸收光谱(DAS)中特征带的性质。研究发现,所研究的模型化合物(咖啡酸、阿魏酸、丁香酸、对苯二甲酸、间苯二甲酸、秦皮素和杨梅素)与 NOM 的 DAS 之间存在一些相似之处。羧基与 Cu(II) 的结合可能产生两个峰 A1 和 A2,而酚基与 Cu(II) 的结合可能产生 NOM DAS 中显示的所有四个高斯峰 A1 到 A4。基于时间相关密度泛函理论(TD-DFT)的方法预测的紫外可见光谱在不同的 Cu(II)结合阶段与模型化合物的实验 DAS 吻合良好。这表明,吸收光谱中的特征主要是由分子中的 HOMO(最高占据分子轨道)-LUMO(最低未占据分子轨道)跃迁引起的,而 DAS 中峰的出现反映了金属离子结合前后分子中反应官能团周围分子轨道的变化。通过金属离子结合诱导的 NOM 的 DAS 特征的基础可以主要通过前沿分子轨道理论来识别。