Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States.
Biomaterials. 2017 Nov;144:1-16. doi: 10.1016/j.biomaterials.2017.07.034. Epub 2017 Aug 1.
Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus.
目前,经阴道局部给予纳米颗粒的方法导致保留率低和广泛泄漏。为了克服这些挑战,我们开发了一种纳米颗粒释放纳米纤维给药平台,并评估了其在小鼠模型中提高纳米颗粒保留率的能力。我们分别针对这种药物输送系统的两个组件进行了定制,以实现与粘液的最佳相互作用,设计了(1)用于更好地保留在阴道内的粘液附着纤维,和(2)通过粘液快速扩散的聚乙二醇化纳米颗粒。我们假设这种新型双功能(粘液附着/粘液穿透)复合材料将提高纳米颗粒在阴道粘膜中的保留率。将等量的荧光纳米颗粒分别以水(混悬液)或纤维复合材料的形式经阴道给予小鼠,并在 24 小时至 7 天的时间点定量检测宫颈阴道粘液和阴道组织中的荧光含量。我们还制备了含有依曲韦林负载纳米颗粒的复合纤维,并评估了 7 天内的药代动力学。我们发现,与水混悬液相比,我们的复合材料在 24 小时时提供了约 30 倍更高的纳米颗粒在生殖道中的保留率。与水混悬液中的纳米颗粒相比,纤维复合材料中的纳米颗粒在 24 小时后至 7 天内持续显示出更高的依曲韦林浓度,表明这种新的给药平台具有持续释放纳米颗粒的能力,可在单次给药后 3 天内持续释放,并将药物保留一周。这是第一个关于阴道给药的释放纳米颗粒的纤维报告,也是第一个研究单一给药系统的报告,该系统结合了两种独特设计的组件,用于与粘液互补相互作用。