Hur Vera Mikyoung, Pandey Ashish Kumar
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Proc Math Phys Eng Sci. 2017 Jul;473(2203):20170153. doi: 10.1098/rspa.2017.0153. Epub 2017 Jul 19.
We determine the stability and instability of a sufficiently small and periodic travelling wave to long-wavelength perturbations, for a nonlinear dispersive equation which extends a Camassa-Holm equation to include all the dispersion of water waves and the Whitham equation to include nonlinearities of medium-amplitude waves. In the absence of the effects of surface tension, the result qualitatively agrees with the Benjamin-Feir instability of a Stokes wave. In the presence of the effects of surface tension, it qualitatively agrees with those from formal asymptotic expansions of the physical problem and improves upon that for the Whitham equation, predicting the critical wave number at the strong surface tension limit. We discuss the modulational stability and instability in the Camassa-Holm equation and other related models.
对于一个非线性色散方程,我们确定了足够小的周期行波对于长波长扰动的稳定性和不稳定性。该方程将Camassa-Holm方程进行了扩展,以包含水波的所有色散,同时将Whitham方程进行了扩展,以包含中振幅波的非线性。在不存在表面张力效应的情况下,结果在定性上与斯托克斯波的本杰明 - 费尔不稳定性一致。在存在表面张力效应的情况下,它在定性上与物理问题的形式渐近展开结果一致,并且比Whitham方程的结果有所改进,预测了强表面张力极限下的临界波数。我们讨论了Camassa-Holm方程和其他相关模型中的调制稳定性和不稳定性。