Deconinck Bernard, Dyachenko Sergey A, Lushnikov Pavel M, Semenova Anastassiya
Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925.
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2308935120. doi: 10.1073/pnas.2308935120. Epub 2023 Jul 31.
The instability of Stokes waves, steady propagating waves on the surface of an ideal fluid of infinite depth, is a fundamental problem in the field of nonlinear science. The dominant instability of these waves depends on their steepness. For small amplitude waves, it is well known that the Benjamin-Feir or modulational instability dominates the dynamics of a wave train. We demonstrate that for steeper waves, an instability caused by disturbances localized at the wave crest vastly surpasses the growth rate of the modulational instability. These dominant localized disturbances are either coperiodic with the Stokes wave or have twice its period. In either case, the nonlinear evolution of the instability leads to the formation of plunging breakers. This phenomenon explains why long propagating ocean swell consists of small-amplitude waves.
斯托克斯波是无限深度理想流体表面上的稳定传播波,其不稳定性是非线性科学领域的一个基本问题。这些波的主要不稳定性取决于它们的陡度。对于小振幅波,众所周知,本杰明 - 费尔不稳定性或调制不稳定性主导着波列的动力学。我们证明,对于更陡的波,由位于波峰处的扰动引起的不稳定性大大超过了调制不稳定性的增长率。这些主要的局部扰动要么与斯托克斯波同周期,要么是其周期的两倍。在任何一种情况下,不稳定性的非线性演化都会导致形成破浪。这一现象解释了为什么长距离传播的海洋涌浪由小振幅波组成。