Hu Wanpei, Wen Zhiling, Yu Xin, Qian Peisen, Lian Weitao, Li Xingcheng, Shang Yanbo, Wu Xiaojun, Chen Tao, Lu Yalin, Wang Mingtai, Yang Shangfeng
Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Anhui Laboratory of Advanced Photon Science and Technology Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 China.
Institute of Solid State Physics Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei 230031 China.
Adv Sci (Weinh). 2021 Mar 13;8(10):2004662. doi: 10.1002/advs.202004662. eCollection 2021 May.
Low-temperature solution-processed TiO nanocrystals (LT-TiO) have been extensively applied as electron transport layer (ETL) of perovskite solar cells (PSCs). However, the low electron mobility, high density of electronic trap states, and considerable photocatalytic activity of TiO result in undesirable charge recombination at the ETL/perovskite interface and notorious instability of PSCs under ultraviolet (UV) light. Herein, LT-TiO nanocrystals are in situ fluorinated via a simple nonhydrolytic method, affording formation of Ti─F bonds, and consequently increase electron mobility, decrease density of electronic trap states, and inhibit photocatalytic activity. Upon applying fluorinated TiO nanocrystals (F-TiO) as ETL, regular-structure planar heterojunction PSC (PHJ-PSC) achieves a champion power conversion efficiency (PCE) of 22.68%, which is among the highest PCEs for PHJ-PSCs based on LT-TiO ETLs. Flexible PHJ-PSC devices based on F-TiO ETL exhibit the best PCE of 18.26%, which is the highest value for TiO-based flexible devices. The bonded F atoms on the surface of TiO promote the formation of Pb─F bonds and hydrogen bonds between F and FA/MA organic cations, reinforcing interface binding of perovskite layer with TiO ETL. This contributes to effective passivation of the surface trap states of perovskite film, resulting in enhancements of device efficiency and stability especially under UV light.
低温溶液法制备的TiO纳米晶体(LT-TiO)已被广泛用作钙钛矿太阳能电池(PSC)的电子传输层(ETL)。然而,TiO的低电子迁移率、高密度的电子陷阱态以及可观的光催化活性导致在ETL/钙钛矿界面处出现不良的电荷复合,并且使PSC在紫外(UV)光下具有显著的不稳定性。在此,通过一种简单的非水解方法对LT-TiO纳米晶体进行原位氟化,形成Ti─F键,从而提高电子迁移率、降低电子陷阱态密度并抑制光催化活性。将氟化TiO纳米晶体(F-TiO)用作ETL时,规则结构的平面异质结PSC(PHJ-PSC)实现了22.68%的最佳功率转换效率(PCE),这是基于LT-TiO ETL的PHJ-PSC中最高的PCE之一。基于F-TiO ETL的柔性PHJ-PSC器件表现出18.26%的最佳PCE,这是基于TiO的柔性器件的最高值。TiO表面键合的F原子促进了Pb─F键以及F与FA/MA有机阳离子之间氢键的形成,加强了钙钛矿层与TiO ETL的界面结合。这有助于有效钝化钙钛矿薄膜的表面陷阱态,从而提高器件效率和稳定性,尤其是在UV光下。