Lecuyer Matthieu, Rubio Marina, Chollat Clément, Lecointre Maryline, Jégou Sylvie, Leroux Philippe, Cleren Carine, Leroux-Nicollet Isabelle, Marpeau Loic, Vivien Denis, Marret Stéphane, Gonzalez Bruno J
Normandie University, UNIROUEN, INSERM U1245 NeoVasc Team, Rouen University Hospital, IRIB, F76000 Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
INSERM U1237 unit "Serine proteases and Pathophysiology of the neurovascular Unit", Normandy University, Caen, France.
Pharmacol Res Perspect. 2017 Aug;5(4). doi: 10.1002/prp2.315.
Clinical studies showed beneficial effects of magnesium sulfate regarding the risk of cerebral palsy. However, regimen protocols fluctuate worldwide and risks of adverse effects impacting the vascular system have been reported for human neonates, keeping open the question of the optimal dosing. Using clinically relevant concentrations and doses of magnesium sulfate, experiments consisted of characterizing, respectively, ex vivo and in vivo, the effects of magnesium sulfate on the nervous and vascular systems of mouse neonates by targeting neuroprotection, angiogenesis, and hemodynamic factors and in measuring, in human fetuses, the impact of a 4-g neuroprotective loading dose of magnesium sulfate on brain hemodynamic parameters. Preclinical experiments using cultured cortical slices from mouse neonates showed that the lowest and highest tested concentrations of magnesium sulfate were equally potent to prevent excitotoxic-induced cell death, cell edema, cell burst, and intracellular calcium increase, whereas no side effects were found regarding apoptosis. In contrast, in vivo data revealed that magnesium sulfate exerted dose-dependent vascular effects on the fetal brain. In particular, it induced brain hypoperfusion, stabilization of Hif-1α, long-term upregulation of VEGF-R2 expression, impaired endothelial viability, and altered cortical angiogenesis. Clinically, in contrast to 6-g loading doses used in some protocols, a 4-g bolus of magnesium sulfate did not altered fetal brain hemodynamic parameters. In conclusion, these data provide the first mechanistic evidence of double-sword and dose-dependent actions of magnesium sulfate on nervous and vascular systems. They strongly support the clinical use of neuroprotection protocols validated for the lowest (4-g) loading dose of magnesium sulfate.
临床研究表明,硫酸镁对降低脑瘫风险有有益作用。然而,世界各地的治疗方案不尽相同,且已有报道称,硫酸镁对人类新生儿的血管系统存在不良反应风险,因此最佳剂量问题仍未解决。本实验采用与临床相关的硫酸镁浓度和剂量,分别在体外和体内,通过针对神经保护、血管生成和血流动力学因素,研究硫酸镁对新生小鼠神经和血管系统的影响,并在人类胎儿中测量4克神经保护负荷剂量的硫酸镁对脑血流动力学参数的影响。使用新生小鼠培养的皮质切片进行的临床前实验表明,测试的最低和最高硫酸镁浓度在预防兴奋性毒性诱导的细胞死亡、细胞水肿、细胞破裂和细胞内钙增加方面同样有效,而未发现对细胞凋亡有副作用。相比之下,体内数据显示硫酸镁对胎儿大脑具有剂量依赖性的血管效应。特别是,它会导致脑灌注不足、Hif-1α稳定、VEGF-R2表达长期上调、内皮细胞活力受损以及皮质血管生成改变。临床上,与某些方案中使用的6克负荷剂量不同,4克硫酸镁推注并未改变胎儿脑血流动力学参数。总之,这些数据首次提供了硫酸镁对神经和血管系统具有双刃剑和剂量依赖性作用的机制证据。它们有力地支持了已验证的最低(4克)负荷剂量硫酸镁神经保护方案的临床应用。