Suppr超能文献

关联高通量筛选以鉴定结核分枝杆菌二氢叶酸还原酶的作用机制和新型抑制剂。

Linking High-Throughput Screens to Identify MoAs and Novel Inhibitors of Mycobacterium tuberculosis Dihydrofolate Reductase.

作者信息

Santa Maria John P, Park Yumi, Yang Lihu, Murgolo Nicholas, Altman Michael D, Zuck Paul, Adam Greg, Chamberlin Chad, Saradjian Peter, Dandliker Peter, Boshoff Helena I M, Barry Clifton E, Garlisi Charles, Olsen David B, Young Katherine, Glick Meir, Nickbarg Elliott, Kutchukian Peter S

机构信息

Modeling & Informatics, Merck Research Laboratories , Boston, Massachusetts, United States.

National Institute of Allergy and Infectious Diseases , Bethesda, Maryland, United States.

出版信息

ACS Chem Biol. 2017 Sep 15;12(9):2448-2456. doi: 10.1021/acschembio.7b00468. Epub 2017 Aug 29.

Abstract

Though phenotypic and target-based high-throughput screening approaches have been employed to discover new antibiotics, the identification of promising therapeutic candidates remains challenging. Each approach provides different information, and understanding their results can provide hypotheses for a mechanism of action (MoA) and reveal actionable chemical matter. Here, we describe a framework for identifying efficacy targets of bioactive compounds. High throughput biophysical profiling against a broad range of targets coupled with machine learning was employed to identify chemical features with predicted efficacy targets for a given phenotypic screen. We validate the approach on data from a set of 55 000 compounds in 24 historical internal antibacterial phenotypic screens and 636 bacterial targets screened in high-throughput biophysical binding assays. Models were built to reveal the relationships between phenotype, target, and chemotype, which recapitulated mechanisms for known antibacterials. We also prospectively identified novel inhibitors of dihydrofolate reductase with nanomolar antibacterial efficacy against Mycobacterium tuberculosis. Molecular modeling provided structural insight into target-ligand interactions underlying selective killing activity toward mycobacteria over human cells.

摘要

尽管已经采用表型和基于靶点的高通量筛选方法来发现新的抗生素,但确定有前景的治疗候选药物仍然具有挑战性。每种方法都提供不同的信息,理解它们的结果可以为作用机制(MoA)提供假设,并揭示可操作的化学物质。在这里,我们描述了一个识别生物活性化合物功效靶点的框架。针对广泛的靶点进行高通量生物物理分析,并结合机器学习来识别给定表型筛选中具有预测功效靶点的化学特征。我们在来自24个历史内部抗菌表型筛选中的55000种化合物以及高通量生物物理结合测定中筛选的636个细菌靶点的数据上验证了该方法。构建模型以揭示表型、靶点和化学类型之间的关系,这概括了已知抗菌药物的作用机制。我们还前瞻性地鉴定了对结核分枝杆菌具有纳摩尔抗菌功效的二氢叶酸还原酶新型抑制剂。分子建模为对人细胞具有选择性杀伤活性的靶点 - 配体相互作用提供了结构见解。

相似文献

引用本文的文献

3
Pharmacological validation of dihydrofolate reductase as a drug target in .二氢叶酸还原酶作为药物靶点在.中的药理学验证
Antimicrob Agents Chemother. 2024 Jan 10;68(1):e0071723. doi: 10.1128/aac.00717-23. Epub 2023 Nov 29.
4
Sensing of Antibiotic-Bacteria Interactions.抗生素与细菌相互作用的感知
Antibiotics (Basel). 2023 Aug 19;12(8):1340. doi: 10.3390/antibiotics12081340.

本文引用的文献

8
Selective small-molecule inhibition of an RNA structural element.选择性小分子抑制 RNA 结构元件。
Nature. 2015 Oct 29;526(7575):672-7. doi: 10.1038/nature15542. Epub 2015 Sep 30.
9
Identifying compound efficacy targets in phenotypic drug discovery.在表型药物发现中鉴定化合物疗效靶点。
Drug Discov Today. 2016 Jan;21(1):82-89. doi: 10.1016/j.drudis.2015.08.001. Epub 2015 Aug 10.
10
ESKAPEing the labyrinth of antibacterial discovery.逃出抗菌药物发现的迷宫。
Nat Rev Drug Discov. 2015 Aug;14(8):529-42. doi: 10.1038/nrd4572. Epub 2015 Jul 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验