Kamps Dominic, Dehmelt Leif
Department for Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund , Dortmund, Germany.
ACS Chem Biol. 2017 Sep 15;12(9):2231-2239. doi: 10.1021/acschembio.7b00451. Epub 2017 Aug 25.
To orchestrate the function and development of multicellular organisms, cells integrate intra- and extracellular information. This information is processed via signal networks in space and time, steering dynamic changes in cellular structure and function. Defects in those signal networks can lead to developmental disorders or cancer. However, experimental analysis of signal networks is challenging as their state changes dynamically and differs between individual cells. Thus, causal relationships between network components are blurred if lysates from large cell populations are analyzed. To directly study causal relationships, perturbations that target specific components have to be combined with measurements of cellular responses within individual cells. However, using standard single-cell techniques, the number of signal activities that can be monitored simultaneously is limited. Furthermore, diffusion of signal network components limits the spatial precision of perturbations, which blurs the analysis of spatiotemporal processing in signal networks. Hybrid strategies based on optogenetics, surface patterning, chemical tools, and protein design can overcome those limitations and thereby sharpen our view into the dynamic spatiotemporal state of signal networks and enable unique insights into the mechanisms that control cellular function in space and time.
为协调多细胞生物体的功能和发育,细胞整合细胞内和细胞外信息。这些信息通过信号网络在空间和时间上进行处理,引导细胞结构和功能的动态变化。这些信号网络中的缺陷可能导致发育障碍或癌症。然而,信号网络的实验分析具有挑战性,因为它们的状态动态变化且在单个细胞之间存在差异。因此,如果分析来自大量细胞群体的裂解物,网络组件之间的因果关系就会变得模糊。为了直接研究因果关系,必须将针对特定组件的扰动与单个细胞内细胞反应的测量相结合。然而,使用标准的单细胞技术,能够同时监测的信号活动数量是有限的。此外,信号网络组件的扩散限制了扰动的空间精度,这模糊了信号网络中时空处理的分析。基于光遗传学、表面图案化、化学工具和蛋白质设计的混合策略可以克服这些限制,从而使我们更清晰地了解信号网络的动态时空状态,并深入了解控制细胞在空间和时间上功能的机制。