Suppr超能文献

监测活细胞中多个信号网络成分对急性化学光遗传扰动的反应。

Monitoring the Response of Multiple Signal Network Components to Acute Chemo-Optogenetic Perturbations in Living Cells.

机构信息

Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany.

Department of Chemistry and Chemical Biology and Department of Systemic Cell Biology, TU Dortmund University and Max-Planck-Institute of Molecular Physiology, 44227, Dortmund, Germany.

出版信息

Chembiochem. 2022 Feb 16;23(4):e202100582. doi: 10.1002/cbic.202100582. Epub 2021 Dec 29.

Abstract

Cells process information via signal networks that typically involve multiple components which are interconnected by feedback loops. The combination of acute optogenetic perturbations and microscopy-based fluorescent response readouts enables the direct investigation of causal links in such networks. However, due to overlaps in spectra of photosensitive and fluorescent proteins, current approaches that combine these methods are limited. Here, we present an improved chemo-optogenetic approach that is based on switch-like perturbations induced by a single, local pulse of UV light. We show that this approach can be combined with parallel monitoring of multiple fluorescent readouts to directly uncover relations between signal network components. We present the application of this technique to directly investigate feedback-controlled regulation in the cell contraction signal network that includes GEF-H1, Rho and Myosin, and functional interactions of this network with tumor relevant RhoA G17 mutants.

摘要

细胞通过信号网络处理信息,这些信号网络通常涉及多个组件,这些组件通过反馈回路相互连接。急性光遗传学扰动和基于显微镜的荧光反应读数的结合,使我们能够直接研究这些网络中的因果关系。然而,由于光敏和荧光蛋白的光谱重叠,目前结合这些方法的方法受到限制。在这里,我们提出了一种基于单次局部紫外线脉冲诱导的开关样扰动的改进化学光遗传学方法。我们表明,这种方法可以与多个荧光读数的并行监测相结合,以直接揭示信号网络组件之间的关系。我们介绍了该技术在直接研究包括 GEF-H1、Rho 和肌球蛋白在内的细胞收缩信号网络中的反馈控制调节,以及该网络与肿瘤相关 RhoA G17 突变体的功能相互作用中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91eb/9303927/91537afaf01a/CBIC-23-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验