Suppr超能文献

使用伽柏滤波器和差分进化算法对X射线血管造影中的冠状动脉进行分割

Coronary artery segmentation in X-ray angiograms using gabor filters and differential evolution.

作者信息

Cervantes-Sanchez Fernando, Cruz-Aceves Ivan, Hernandez-Aguirre Arturo, Solorio-Meza Sergio, Cordova-Fraga Teodoro, Aviña-Cervantes Juan Gabriel

机构信息

Centro de Investigación en Matemáticas, A.C. (CIMAT), Jalisco S/N, Col. Valenciana, Guanajuato, Gto, Mexico.

CONACYT - Centro de Investigación en Matemáticas, A.C. (CIMAT), Jalisco S/N, Col. Valenciana, Guanajuato, Gto, Mexico.

出版信息

Appl Radiat Isot. 2018 Aug;138:18-24. doi: 10.1016/j.apradiso.2017.08.007. Epub 2017 Aug 5.

Abstract

Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristics curve is used as objective function. In the experimental results, the proposed method achieves an A=0.9388 in a training set of 40 images, and for a test set of 40 images it obtains the highest performance with an A=0.9538 compared with six state-of-the-art vessel detection methods. Finally, the proposed method achieves an accuracy of 0.9423 for vessel segmentation using the test set. In addition, the experimental results have also shown that the proposed method can be highly suitable for clinical decision support in terms of computational time and vessel segmentation performance.

摘要

在X射线血管造影中对冠状动脉进行分割是计算机辅助诊断的一项重要任务,因为它可以帮助心脏病专家诊断和监测血管异常情况。由于X射线血管造影的主要缺点是光照不均匀以及血管与图像背景之间的对比度较弱,因此人们引入了不同的血管增强方法。本文提出了一种基于使用差分进化(DE)优化策略调整的Gabor滤波器的血管增强新方法。由于Gabor滤波器由三个不同参数控制,因此非常需要对这些参数进行优化选择,以便在提高血管检测率的同时降低训练阶段的计算成本。为了获得Gabor滤波器的最佳参数集,将接收器操作特性曲线下的面积(Az)用作目标函数。在实验结果中,该方法在40幅图像的训练集中达到了A=0.9388,对于40幅图像的测试集而言与六种最先进的血管检测方法相比,它以A=0.9538获得了最高性能。最后,该方法使用测试集进行血管分割时的准确率达到了0.9423。此外,实验结果还表明,就计算时间和血管分割性能而言,该方法非常适合临床决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验