Suppr超能文献

一种基于神经网络的新型多尺度高斯匹配滤波器在 X 射线冠状动脉造影图像分割中的应用。

A Novel Multiscale Gaussian-Matched Filter Using Neural Networks for the Segmentation of X-Ray Coronary Angiograms.

机构信息

CONACYT - Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, Mexico.

Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, Mexico.

出版信息

J Healthc Eng. 2018 Apr 18;2018:5812059. doi: 10.1155/2018/5812059. eCollection 2018.

Abstract

The accurate and efficient segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis. This paper presents a new multiscale Gaussian-matched filter (MGMF) based on artificial neural networks. The proposed method consists of two different stages. In the first stage, MGMF is used for detecting vessel-like structures while reducing image noise. The results of MGMF are compared with those obtained using six GMF-based detection methods in terms of the area () under the receiver operating characteristic (ROC) curve. In the second stage, ten thresholding methods of the state of the art are compared in order to classify the magnitude of the multiscale Gaussian response into vessel and nonvessel pixels, respectively. The accuracy measure is used to analyze the segmentation methods, by comparing the results with a set of 100 X-ray coronary angiograms, which were outlined by a specialist to form the ground truth. Finally, the proposed method is compared with seven state-of-the-art vessel segmentation methods. The vessel detection results using the proposed MGMF method achieved an = 0.9357 with a training set of 50 angiograms and = 0.9362 with the test set of 50 images. In addition, the segmentation results using the intraclass variance thresholding method provided a segmentation accuracy of 0.9568 with the test set of coronary angiograms.

摘要

冠状动脉在 X 射线血管造影中的精确和有效分割是计算机辅助诊断的一项重要任务。本文提出了一种新的基于人工神经网络的多尺度高斯匹配滤波器(MGMF)。该方法包括两个不同的阶段。在第一阶段,MGMF 用于检测管状结构,同时减少图像噪声。将 MGMF 的结果与基于 6 种 GMF 检测方法的结果进行比较,以比较接收者操作特征(ROC)曲线下的面积()。在第二阶段,比较了十种最先进的阈值方法,以便将多尺度高斯响应的幅度分别分类为血管和非血管像素。使用准确度测量来分析分割方法,通过将结果与由专家勾勒出的 100 张 X 射线冠状动脉图像集进行比较,形成ground truth。最后,将所提出的方法与七种最先进的血管分割方法进行比较。使用所提出的 MGMF 方法进行血管检测的结果在 50 张血管造影图像的训练集上为 = 0.9357,在 50 张图像的测试集上为 = 0.9362。此外,使用类内方差阈值方法的分割结果在冠状动脉造影的测试集上提供了 0.9568 的分割精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d015/5932432/60a059e3d367/JHE2018-5812059.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验