National Institute of Aquatic Resources and Centre for Ocean Life, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9373-9378. doi: 10.1073/pnas.1708873114. Epub 2017 Aug 14.
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.
微生物滤食者是一类重要的摄食者,对微生物环、水生食物网和生物地球化学循环都具有重要意义。然而,我们对微生物滤食的理解还很有限,重要的是,我们不知道微生物滤食者必须产生多大的力才能处理足够数量的水。此外,尽管滤隙的权衡很简单,但它仍然没有得到探索:滤隙太粗会允许大小合适的猎物不受阻碍地通过,而滤隙太细则会导致强烈的流动阻力。我们使用粒子追踪技术来量化滤食性纤毛原生动物的摄食水流,并证明目前对微生物滤食的理解与计算流体动力学(CFD)和分析估计不一致。这两种方法都低估了观察到的过滤率超过一个数量级;鞭毛的拍打根本无法通过精细的过滤器吸入足够的水。我们对其他纤毛原生动物物种也发现了类似的差异,突出了一个明显的悖论。我们的观察结果促使我们提出一种截然不同的过滤机制,该机制需要一个鞭毛叶片(薄片),这是很难想象的,但在相关的领细胞(海绵)中偶尔会观察到。一个带有鞭毛叶片的 CFD 模型正确地预测了 的过滤率,并且使用一个简单的模型,我们可以解释其他微生物滤食者的过滤率。最后,我们预测了最优的滤孔尺寸如何随微生物滤食者的细胞尺寸而增加,这一预测与观察结果非常吻合。我们预计我们的研究结果对小尺度生物物理和基于特征的生态模型具有重要意义。