Suppr超能文献

通过引入新的遗传多样性来增强(农作物)植物的光合作用。

Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

作者信息

Dann Marcel, Leister Dario

机构信息

Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.

Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0380.

Abstract

Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

摘要

尽管光合光反应的某些元素看似理想,但在进化过程中,光转化为生物量的整体效率尚未得到优化。由于作物植物在光合作用方面的遗传多样性匮乏,因此要提高其光转化为产量的效率,就必须创造新的变异。原则上,有三种自然变异来源:(i)现存高等植物物种中的稀有多样性;(ii)藻类中的光合变异体;(iii)重建已不复存在的植物光合作用类型。在此,我们主张采用一种新颖的方法,即将作物光合作用外包给一种易于适应性进化的蓝细菌。该系统具有诸多优势,包括世代时间短、种群规模几乎不受限制以及突变率高,同时还有用于基因操作的通用工具箱。在这样一个合成细菌平台上,数万年(作物)植物进化过程可在数周内重现。该系统的局限性源于其单细胞性质,无法重现作物光合作用的所有方面。但是,成功建立这样一个用于作物光合作用的细菌宿主,不仅有望提高真核生物光合作用的性能,还将揭示光合灵活性分子基础的新层面。本文是主题为“提高作物植物光合作用:改进目标”特刊的一部分。

相似文献

2
Photosynthesis solutions to enhance productivity.提高生产力的光合作用解决方案。
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0374.
7
Natural genetic variation in plant photosynthesis.植物光合作用的自然遗传变异。
Trends Plant Sci. 2011 Jun;16(6):327-35. doi: 10.1016/j.tplants.2011.02.005. Epub 2011 Mar 23.

引用本文的文献

8
Engineering Improved Photosynthesis in the Era of Synthetic Biology.工程改造合成生物学时代的光合作用。
Plant Commun. 2020 Feb 13;1(2):100032. doi: 10.1016/j.xplc.2020.100032. eCollection 2020 Mar 9.
9
Genetic strategies for improving crop yields.遗传策略提高作物产量。
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
10
The Multiplanetary Future of Plant Synthetic Biology.植物合成生物学的多行星未来
Genes (Basel). 2018 Jul 10;9(7):348. doi: 10.3390/genes9070348.

本文引用的文献

5
Environmental changes bridge evolutionary valleys.环境变化跨越进化峡谷。
Sci Adv. 2016 Jan 22;2(1):e1500921. doi: 10.1126/sciadv.1500921. eCollection 2016 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验