Suppr超能文献

钌催化端炔氢胺化反应的机理及选择性的计算研究

Computational study of the mechanism and selectivity of ruthenium-catalyzed hydroamidations of terminal alkynes.

作者信息

Maity Bholanath, Gooßen Lukas J, Koley Debasis

机构信息

Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India . Email:

Fachbereich Chemie , TU Kaiserslautern , Erwin-Schrödinger-Straβe 54 , D-67663 Kaiserslautern , Germany . Email:

出版信息

Chem Sci. 2015 Apr 1;6(4):2532-2552. doi: 10.1039/c4sc03906h. Epub 2015 Feb 18.

Abstract

Density functional theory calculations were performed to elucidate the mechanism of the ruthenium-catalyzed hydroamidation of terminal alkynes, a powerful and sustainable method for the stereoselective synthesis of enamides. The results provide an explanation for the puzzling experimental finding that with tri--butylphosphine (P(Bu)) as the ligand, the -configured enamides are obtained, whereas the stereoselectivity is inverted in favor of the -configured enamides with (dicyclohexylphosphino)methane (dcypm) ligands. Using the addition of pyrrolidinone to 1-hexyne as a model reaction, various pathways were investigated, among which a catalytic cycle turned out to be most advantageous for both ligand systems that consists of: (a) oxidative addition, (b) alkyne coordination, (c) alkyne insertion (d) vinyl-vinylidene rearrangement, (e) nucleophilic transfer and finally (f) reductive elimination. The stereoselectivity of the reaction is decided in the nucleophilic transfer step. For the P( Bu) ligand, the butyl moiety is oriented to the incoming 2-pyrolidinyl unit during the nucleophilic transfer step, whereas for the dcypm ligand, steric repulsion between the butyl and cyclohexyl groups turns it into a orientation. Overall, the formation of -configured product is favorable by 4.8 kcal mol (ΔSDL) for the catalytic cycle computed with P(Bu) as ancillary ligand, whereas for the catalytic cycle computed with dcypm ligands, the -product is favored by 7.0 kcal mol (ΔSDL). These calculations are in excellent agreement with experimental findings.

摘要

进行密度泛函理论计算以阐明钌催化的末端炔烃氢胺化反应的机理,这是一种立体选择性合成烯酰胺的强大且可持续的方法。结果为一个令人困惑的实验发现提供了解释:以三叔丁基膦(P(Bu))为配体时,得到的是E构型的烯酰胺,而当使用(二环己基膦基)甲烷(dcypm)配体时,立体选择性反转,有利于Z构型的烯酰胺。以吡咯烷酮与1-己炔的加成反应为模型反应,研究了各种反应途径,结果表明,对于这两种配体体系,由以下步骤组成的催化循环最为有利:(a)氧化加成,(b)炔烃配位,(c)炔烃插入,(d)乙烯基-亚乙烯基重排,(e)亲核转移,最后是(f)还原消除。反应的立体选择性在亲核转移步骤中决定。对于P(Bu)配体,在亲核转移步骤中,丁基部分朝向进入的2-吡咯烷基单元,而对于dcypm配体,丁基和环己基之间的空间排斥使其变为Z取向。总体而言,以P(Bu)为辅助配体计算的催化循环中,E构型产物的形成比Z构型产物有利4.8 kcal/mol(ΔSDL),而对于以dcypm配体计算的催化循环,Z产物比E产物有利7.0 kcal/mol(ΔSDL)。这些计算结果与实验结果非常吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec1/5539791/cb2198ec61ca/c4sc03906h-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验