College of Science, China University of Petroleum , Qingdao, Shandong 266580, PR China.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):30002-30013. doi: 10.1021/acsami.7b10836. Epub 2017 Aug 24.
The graphdiyne family has attracted a high degree of concern because of its intriguing and promising properties. However, graphdiyne materials reported to date represent only a tiny fraction of the possible combinations. In this work, we demonstrate a computational approach to generate a series of conceivable graphdiyne-based frameworks (GDY-Rs and Li@GDY-Rs) by introducing a variety of functional groups (R = -NH, -OH, -COOH, and -F) and doping metal (Li) in the molecular building blocks of graphdiyne without restriction of experimental conditions and rapidly screen the best candidates for the application of CO capture and sequestration (CCS). The pore topology and morphology and CO adsorption and separation properties of these frameworks are systematically investigated by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations. On the basis of our computer simulations, combining Li-doping and hydroxyl groups strategies offer an unexpected synergistic effect for efficient CO capture with an extremely CO uptake of 4.83 mmol/g at 298 K and 1 bar. Combined with its superior selectivity (13 at 298 K and 1 bar) for CO over CH, Li@GDY-OH is verified to be one of the most promising materials for CO capture and separation.
二维炔烃家族因其独特而有前途的性质而引起了高度关注。然而,迄今为止报道的二维炔烃材料仅代表可能的组合中的一小部分。在这项工作中,我们通过在二维炔烃的分子构建块中引入各种官能团(R=-NH、-OH、-COOH 和-F)和掺杂金属(Li),展示了一种生成一系列可想象的二维炔烃基框架(GDY-Rs 和 Li@GDY-Rs)的计算方法,而不受实验条件的限制,并快速筛选 CO 捕获和封存(CCS)应用的最佳候选者。通过结合密度泛函理论(DFT)和巨正则蒙特卡罗(GCMC)模拟,系统地研究了这些框架的孔拓扑和形态以及 CO 的吸附和分离性能。基于我们的计算机模拟,结合 Li 掺杂和羟基策略为高效 CO 捕获提供了意想不到的协同效应,在 298 K 和 1 巴下 CO 的吸附量高达 4.83 mmol/g。结合其对 CO 具有超高选择性(298 K 和 1 巴时为 13)超过 CH4,Li@GDY-OH 被证明是 CO 捕获和分离最有前途的材料之一。