Khosrowshahi Mobin Safarzadeh, Mashhadimoslem Hossein, Shayesteh Hadi, Singh Gurwinder, Khakpour Elnaz, Guan Xinwei, Rahimi Mohammad, Maleki Farid, Kumar Prashant, Vinu Ajayan
Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
Adv Sci (Weinh). 2023 Dec;10(36):e2304289. doi: 10.1002/advs.202304289. Epub 2023 Oct 31.
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO capture.
由于现在已经确定全球变暖和气候变化是现实,国际投资正在涌入,而且这对于缓解气候变化来说是合理的。因此,碳捕获与分离(CCS)正变得至关重要,因为它被认为是应对全球变暖的有力解决方案之一。在多孔材料上进行吸附是传统二氧化碳(CO₂)捕获技术的一种有前景的替代方法。由于其可持续可得性、经济可行性和重要的可回收性,天然产物衍生的多孔碳已成为用于CO₂吸附的有利且有竞争力的材料。此外,使用可再生前驱体和废料制备高质量的增值功能性多孔碳基材料是一种环保方法。本综述提供了关键的见解和分析,以增进对多孔碳在CO₂捕获中的应用的理解。讨论了合成多孔碳的各种方法、它们的结构表征以及影响其吸附性能的参数。该综述还深入探讨了利用分子动力学(MD)、蒙特卡罗(MC)、密度泛函理论(DFT)和机器学习技术来模拟吸附并验证实验结果。最后,该综述为推进天然产物衍生的多孔碳用于CO₂捕获的应用提供了未来展望和研究方向。