Suppr超能文献

荧光偏振分析在高通量筛选和药物发现中的应用:综述。

Fluorescence polarization assays in high-throughput screening and drug discovery: a review.

机构信息

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.

出版信息

Methods Appl Fluoresc. 2016 Apr 28;4(2):022001. doi: 10.1088/2050-6120/4/2/022001.

Abstract

The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.

摘要

荧光偏振(FP)和荧光各向异性(FA)对分子量变化的敏感性使人们能够研究从分子相互作用到酶活性等各种生物学机制。基于 FP/FA 技术的测定法由于均相格式、稳健的性能以及对某些类型干扰(如内滤效应)的相对不敏感性,已被广泛应用于高通量筛选(HTS)和药物发现中。测定法设计、荧光探针和技术的进步使 FP 测定法能够应用于越来越复杂的生物学过程。本文讨论了为 HTS 开发的不同类型的 FP/FA 测定法,并举例说明了适用靶标的多样性。此外,还使用 PubChem 数据库中的注释 HTS 测定法检查了靶标和荧光团选择以及测定法类型和格式的趋势。最后,根据我们中心的经验和文献中的示例,提供了成功开发和实施 FP/FA 用于 HTS 的测定法的实际考虑因素,包括在命中化合物列表中标记干扰化合物的策略。

相似文献

1
Fluorescence polarization assays in high-throughput screening and drug discovery: a review.
Methods Appl Fluoresc. 2016 Apr 28;4(2):022001. doi: 10.1088/2050-6120/4/2/022001.
2
Ligand Discovery: High-Throughput Binding: Fluorescence Polarization (Anisotropy).
Methods Mol Biol. 2021;2263:231-246. doi: 10.1007/978-1-0716-1197-5_10.
5
Fluorescence polarization assays in small molecule screening.
Expert Opin Drug Discov. 2011 Jan;6(1):17-32. doi: 10.1517/17460441.2011.537322.
6
Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery.
J Med Chem. 2023 Aug 24;66(16):10934-10958. doi: 10.1021/acs.jmedchem.3c00881. Epub 2023 Aug 10.
8
Rethinking molecular similarity: comparing compounds on the basis of biological activity.
ACS Chem Biol. 2012 Aug 17;7(8):1399-409. doi: 10.1021/cb3001028. Epub 2012 May 31.
10
Readout technologies for highly miniaturized kinase assays applicable to high-throughput screening in a 1536-well format.
J Biomol Screen. 2006 Sep;11(6):617-33. doi: 10.1177/1087057106288444. Epub 2006 Jun 7.

引用本文的文献

1
A cell-based scrambling assay reveals phospholipid headgroup preference of TMEM16F on the plasma membrane.
bioRxiv. 2025 Jun 27:2025.06.25.661602. doi: 10.1101/2025.06.25.661602.
3
Target Engagement Assays in Early Drug Discovery.
J Med Chem. 2025 Jun 26;68(12):12331-12368. doi: 10.1021/acs.jmedchem.4c03115. Epub 2025 Jun 4.
5
The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria.
RSC Adv. 2025 Apr 30;15(18):14001-14029. doi: 10.1039/d5ra00016e. eCollection 2025 Apr 28.
6
DT-13 Mediates Ligand-Dependent Activation of PPARγ Response Elements In Vitro.
Biology (Basel). 2024 Dec 4;13(12):1015. doi: 10.3390/biology13121015.
7
Transmembrane proteins in grape immunity: current knowledge and methodological advances.
Front Plant Sci. 2024 Dec 20;15:1515163. doi: 10.3389/fpls.2024.1515163. eCollection 2024.
9
Read-write mechanisms of H2A ubiquitination by Polycomb repressive complex 1.
Nature. 2024 Dec;636(8043):755-761. doi: 10.1038/s41586-024-08183-5. Epub 2024 Nov 13.
10
Illuminating cellular architecture and dynamics with fluorescence polarization microscopy.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261947. Epub 2024 Oct 14.

本文引用的文献

2
Pan Assay Interference Compounds (PAINS) and Other Promiscuous Compounds in Antifungal Research.
J Med Chem. 2016 Jan 28;59(2):497-503. doi: 10.1021/acs.jmedchem.5b00361. Epub 2015 Sep 8.
3
Fluorescence anisotropy (polarization): from drug screening to precision medicine.
Expert Opin Drug Discov. 2015;10(11):1145-61. doi: 10.1517/17460441.2015.1075001. Epub 2015 Aug 3.
5
Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes.
Cell. 2015 Jun 4;161(6):1252-65. doi: 10.1016/j.cell.2015.05.023.
6
FAF-Drugs3: a web server for compound property calculation and chemical library design.
Nucleic Acids Res. 2015 Jul 1;43(W1):W200-7. doi: 10.1093/nar/gkv353. Epub 2015 Apr 16.
7
Fluorescence polarization assay to quantify protein-protein interactions in an HTS format.
Methods Mol Biol. 2015;1278:529-44. doi: 10.1007/978-1-4939-2425-7_35.
8
Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival.
ACS Chem Biol. 2015 Apr 17;10(4):925-32. doi: 10.1021/cb500893q. Epub 2015 Jan 20.
9
BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types.
Nucleic Acids Res. 2015 Jan;43(Database issue):D1163-70. doi: 10.1093/nar/gku1244. Epub 2014 Dec 4.
10
Covalent small molecule inhibitors of Ca(2+)-bound S100B.
Biochemistry. 2014 Oct 28;53(42):6628-40. doi: 10.1021/bi5005552. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验