Suppr超能文献

关节软骨缺损修复的先进策略

Advanced Strategies for Articular Cartilage Defect Repair.

作者信息

Matsiko Amos, Levingstone Tanya J, O'Brien Fergal J

机构信息

Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.

Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.

出版信息

Materials (Basel). 2013 Feb 22;6(2):637-668. doi: 10.3390/ma6020637.

Abstract

Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual's lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

摘要

关节软骨是一种独特的组织,因为它有能力在一个人的一生中承受反复的压缩应力。然而,它的主要局限性是即使是最轻微的损伤也无法愈合。目前仍然缺乏能够刺激具有适当功能特性的透明样关节软骨生长的策略。组织工程学的最新科学进展在开发用于关节软骨修复的构建体方面迈出了重要步伐。特别是,研究表明生物材料的物理化学性质具有显著影响祖细胞增殖、分化和基质沉积的潜力。因此,这凸显了利用这些性质来引导这些细胞所遵循的谱系的潜力。此外,使用可溶性生长因子来增强生物材料的生物活性和再生能力最近已被组织工程领域的研究人员所采用。此外,基因治疗是一个不断发展的领域,在组织工程中已得到显著应用,部分原因是它有可能克服与当前生长因子递送系统相关的一些缺点。在这种背景下,生物材料科学、基于细胞和基于生长因子的疗法中用于受损关节软骨修复和重建的这些先进策略将是本文综述的重点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f08/5452095/3af67b6fc76e/materials-06-00637-g001.jpg

相似文献

1
Advanced Strategies for Articular Cartilage Defect Repair.
Materials (Basel). 2013 Feb 22;6(2):637-668. doi: 10.3390/ma6020637.
2
Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
Acta Biomater. 2018 Nov;81:256-266. doi: 10.1016/j.actbio.2018.09.058. Epub 2018 Sep 28.
4
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
Acta Biomater. 2017 Jul 15;57:1-25. doi: 10.1016/j.actbio.2017.01.036. Epub 2017 Jan 11.
5
6
Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination.
Acta Biomater. 2019 Mar 1;86:207-222. doi: 10.1016/j.actbio.2018.12.035. Epub 2018 Dec 25.
8
Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
Adv Exp Med Biol. 2015;881:143-60. doi: 10.1007/978-3-319-22345-2_9.

引用本文的文献

1
Engineering bone/cartilage organoids: strategy, progress, and application.
Bone Res. 2024 Nov 20;12(1):66. doi: 10.1038/s41413-024-00376-y.
2
Therapeutic Controlled Release Strategies for Human Osteoarthritis.
Adv Healthc Mater. 2025 Jan;14(2):e2402737. doi: 10.1002/adhm.202402737. Epub 2024 Nov 6.
4
Visualization and bibliometric analysis of 3D printing in cartilage regeneration.
Front Bioeng Biotechnol. 2023 Jun 30;11:1214715. doi: 10.3389/fbioe.2023.1214715. eCollection 2023.
5
6
evaluation of the mechanical stimulation effect on the regenerative rehabilitation for the articular cartilage local defects.
Front Med (Lausanne). 2023 Mar 7;10:1134786. doi: 10.3389/fmed.2023.1134786. eCollection 2023.
7
Advances in the Treatment of Partial-Thickness Cartilage Defect.
Int J Nanomedicine. 2022 Dec 13;17:6275-6287. doi: 10.2147/IJN.S382737. eCollection 2022.
8
Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases.
Hum Vaccin Immunother. 2022 Nov 30;18(6):2144667. doi: 10.1080/21645515.2022.2144667. Epub 2022 Nov 16.
9
Advances in Biomaterial-Mediated Gene Therapy for Articular Cartilage Repair.
Bioengineering (Basel). 2022 Sep 24;9(10):502. doi: 10.3390/bioengineering9100502.
10
Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications.
Tissue Eng Regen Med. 2022 Oct;19(5):891-912. doi: 10.1007/s13770-022-00464-2. Epub 2022 Jul 11.

本文引用的文献

2
Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate.
Arthrosc Tech. 2012 Sep 14;1(2):e175-80. doi: 10.1016/j.eats.2012.07.001. Print 2012 Dec.
4
5
Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds.
J Mech Behav Biomed Mater. 2012 Jul;11:53-62. doi: 10.1016/j.jmbbm.2011.11.009. Epub 2011 Dec 3.
7
Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells.
Stem Cells Dev. 2012 Sep 20;21(14):2724-52. doi: 10.1089/scd.2011.0722. Epub 2012 May 9.
10
The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds.
J Control Release. 2012 Mar 10;158(2):304-11. doi: 10.1016/j.jconrel.2011.11.026. Epub 2011 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验