Suppr超能文献

通过机械不稳定性有序且原子级完美地断裂层状过渡金属二卤化物。

Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides via Mechanical Instabilities.

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.

School of Physical and Mathematical Sciences, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.

出版信息

ACS Nano. 2017 Sep 26;11(9):9191-9199. doi: 10.1021/acsnano.7b04158. Epub 2017 Aug 17.

Abstract

Thermoplastic polymers subjected to a continuous tensile stress experience a state of mechanical instabilities, resulting in neck formation and propagation. The necking process with strong localized strain enables the transformation of initially brittle polymeric materials into robust, flexible, and oriented forms. Here we harness the polymer-based mechanical instabilities to control the fragmentation of atomically thin transition metal dichalcogenides (TMDs). We develop a simple and versatile nanofabrication tool to precisely fragment atom-thin TMDs sandwiched between thermoplastic polymers into ordered and atomically perfect TMD nanoribbons in arbitrary directions regardless of the crystal structures, defect content, and original geometries. This method works for a very broad spectrum of semiconducting TMDs with thicknesses ranging from monolayers to bulk crystals. We also explore the electrical properties of the fabricated monolayer nanoribbon arrays, obtaining an on/off ratio of ∼10 for such MoS arrays based field-effect transistors. Furthermore, we demonstrate an improved hydrogen evolution reaction with the resulting monolayer MoS nanoribbons, thanks to the largely increased catalytic edge sites formed by this physical fragmentation method. This capability not only enriches the fundamental study of TMD extreme and fragmentation mechanics, but also impacts on future developments of TMD-based devices.

摘要

热塑性聚合物在持续的拉伸应力下会经历机械失稳状态,导致颈缩的形成和扩展。颈缩过程中强烈的局部应变使最初易碎的聚合物材料转变为坚固、灵活和取向的形式。在这里,我们利用基于聚合物的机械不稳定性来控制原子层厚的过渡金属二卤化物(TMDs)的碎裂。我们开发了一种简单而通用的纳米制造工具,可将夹在热塑性聚合物之间的原子层厚 TMD 精确地碎裂成任意方向的有序且原子完美的 TMD 纳米带,而与晶体结构、缺陷含量和原始几何形状无关。这种方法适用于从单层到块状晶体的非常广泛的半导体 TMD 。我们还探索了所制造的单层纳米带阵列的电学性质,基于场效应晶体管的 MoS 阵列获得了约 10 的开/关比。此外,由于这种物理碎裂方法形成了大量增加的催化边缘位,因此我们在单层 MoS 纳米带中展示了改进的析氢反应。这种能力不仅丰富了 TMD 极端和碎裂力学的基础研究,而且对基于 TMD 的器件的未来发展产生了影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验