Suppr超能文献

过渡金属二卤化物及其以外的单层和少层纳米片的合成、性质和应用。

Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.

机构信息

Key Laboratory of Advanced Materials (Ministry of Education), School of Materials Science and Engineering, Tsinghua University , Beijing, 100084, People's Republic of China.

出版信息

Acc Chem Res. 2015 Jan 20;48(1):56-64. doi: 10.1021/ar5002846. Epub 2014 Dec 9.

Abstract

CONSPECTUS

In the wake of the discovery of the remarkable electronic and physical properties of graphene, a vibrant research area on two-dimensional (2D) layered materials has emerged during the past decade. Transition metal dichalcogenides (TMDs) represent an alternative group of 2D layered materials that differ from the semimetallic character of graphene. They exhibit diverse properties that depend on their composition and can be semiconductors (e.g., MoS2, WS2), semimetals (e.g., WTe2, TiSe2), true metals (e.g., NbS2, VSe2), and superconductors (e.g., NbSe2, TaS2). The properties of TMDs can also be tailored according to the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. For example, 2H-MoS2 is semiconducting, whereas 1T-MoS2 is metallic. Bulk 2H-MoS2 possesses an indirect band gap, but when 2H-MoS2 is exfoliated into monolayers, it exhibits direct electronic and optical band gaps, which leads to enhanced photoluminescence. Therefore, it is important to learn to control the growth of 2D TMD structures in order to exploit their properties in energy conversion and storage, catalysis, sensing, memory devices, and other applications. In this Account, we first introduce the history and structural basics of TMDs. We then briefly introduce the Raman fingerprints of TMDs of different layer numbers. Then, we summarize our progress on the controlled synthesis of 2D layered materials using wet chemical approaches, chemical exfoliation, and chemical vapor deposition (CVD). It is now possible to control the number of layers when synthesizing these materials, and novel van der Waals heterostructures (e.g., MoS2/graphene, WSe2/graphene, hBN/graphene) have recently been successfully assembled. Finally, the unique optical, electrical, photovoltaic, and catalytic properties of few-layered TMDs are summarized and discussed. In particular, their enhanced photoluminescence (PL), photosensing, photovoltaic conversion, and hydrogen evolution reaction (HER) catalysis are discussed in detail. Finally, challenges along each direction are described. For instance, how to grow perfect single crystalline monolayer TMDs without the presence of grain boundaries and dislocations is still an open question. Moreover, the morphology and crystal structure control of few-layered TMDs still requires further research. For wet chemical approaches and chemical exfoliation methods, it is still a significant challenge to control the lateral growth of TMDs without expansion in the c-axis direction. In fact, there is plenty of room in the 2D world beyond graphene. We envisage that with increasing progress in the controlled synthesis of these systems the unusual properties of mono- and few-layered TMDs and TMD heterostructures will be unveiled.

摘要

概述

在发现石墨烯显著的电子和物理特性之后,在过去十年中,二维(2D)层状材料领域出现了一个充满活力的研究领域。过渡金属二卤化物(TMDs)是另一种二维层状材料,与石墨烯的半金属性质不同。它们表现出依赖于其组成的多种性质,并且可以是半导体(例如 MoS2、WS2)、半金属(例如 WTe2、TiSe2)、真金属(例如 NbS2、VSe2)和超导体(例如 NbSe2、TaS2)。TMDs 的性质也可以根据其晶体结构以及晶体和薄膜中层数和堆叠顺序进行调整。例如,2H-MoS2 是半导体,而 1T-MoS2 是金属。块状 2H-MoS2 具有间接带隙,但当 2H-MoS2 剥离成单层时,它表现出直接的电子和光学带隙,从而导致增强的光致发光。因此,重要的是要学会控制 2D TMD 结构的生长,以便在能量转换和存储、催化、传感、存储器件和其他应用中利用它们的性质。在本综述中,我们首先介绍了 TMDs 的历史和结构基础。然后,我们简要介绍了不同层数的 TMDs 的拉曼指纹。然后,我们总结了我们在使用湿化学方法、化学剥离和化学气相沉积(CVD)控制合成 2D 层状材料方面的进展。现在可以在合成这些材料时控制层数,并且最近已经成功组装了新型范德华异质结构(例如 MoS2/石墨烯、WSe2/石墨烯、hBN/石墨烯)。最后,总结了少层 TMDs 的独特光学、电学、光伏和催化性质,并进行了讨论。特别是,详细讨论了它们增强的光致发光(PL)、光传感、光伏转换和析氢反应(HER)催化作用。最后,描述了每个方向的挑战。例如,如何在没有晶界和位错的情况下生长完美的单晶单层 TMDs 仍然是一个悬而未决的问题。此外,少层 TMDs 的形貌和晶体结构控制仍然需要进一步研究。对于湿化学方法和化学剥离方法,仍然难以控制 TMDs 在不扩展 c 轴方向的情况下的横向生长。实际上,在石墨烯之外的 2D 世界中还有很多空间。我们设想,随着这些系统的受控合成的不断进步,单层和少层 TMDs 和 TMD 异质结构的异常性质将被揭示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验