Suppr超能文献

由细菌连接酶SdeA修饰的泛素链可免受去泛素化酶水解。

Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis.

作者信息

Puvar Kedar, Zhou Yiyang, Qiu Jiazhang, Luo Zhao-Qing, Wirth Mary J, Das Chittaranjan

机构信息

Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47906, United States.

Purdue Institute of Immunology, Inflammation, and Infectious Diseases and Department of Biological Sciences, Purdue University , 915 West State Street, West Lafayette, Indiana 47906, United States.

出版信息

Biochemistry. 2017 Sep 12;56(36):4762-4766. doi: 10.1021/acs.biochem.7b00664. Epub 2017 Aug 18.

Abstract

The SidE family of Legionella pneumophila effectors is a unique group of ubiquitin-modifying enzymes. Along with catalyzing NAD-dependent ubiquitination of certain host proteins independent of the canonical E1/E2/E3 pathway, they have also been shown to produce phosphoribosylated free ubiquitin. This modified ubiquitin product is incompatible with conventional E1/E2/E3 ubiquitination processes, with the potential to lock down various cellular functions that are dependent on ubiquitin signaling. Here, we show that in addition to free ubiquitin, Lys63-, Lys48-, Lys11-, and Met1-linked diubiquitin chains are also modified by SdeA in a similar fashion. Both the proximal and distal ubiquitin moieties are targeted in the phosphoribosylation reaction. Furthermore, this renders the ubiquitin chains unable to be processed by a variety of deubiquitinating enzymes. These observations broaden the scope of SdeA's modulatory functions during Legionella infection.

摘要

嗜肺军团菌效应蛋白SidE家族是一类独特的泛素修饰酶。除了催化某些宿主蛋白的NAD依赖性泛素化反应(不依赖于经典的E1/E2/E3途径)外,它们还被证明能产生磷酸核糖基化的游离泛素。这种修饰后的泛素产物与传统的E1/E2/E3泛素化过程不兼容,有可能锁定各种依赖泛素信号传导的细胞功能。在这里,我们表明,除了游离泛素外,SdeA还以类似的方式修饰了赖氨酸63、赖氨酸48、赖氨酸11和蛋氨酸1连接的双泛素链。在磷酸核糖基化反应中,近端和远端泛素部分均被靶向修饰。此外,这使得泛素链无法被多种去泛素化酶加工处理。这些观察结果拓宽了SdeA在军团菌感染过程中调节功能的范围。

相似文献

4
Purification and functional characterization of the DUB domain of SdeA.SdeA的去泛素化酶结构域的纯化及功能表征
Methods Enzymol. 2019;618:343-355. doi: 10.1016/bs.mie.2018.12.024. Epub 2019 Feb 1.

引用本文的文献

1
, a Rosetta stone to understanding bacterial pathogenesis.,一块理解细菌致病机制的罗塞塔石碑。
J Bacteriol. 2024 Dec 19;206(12):e0032424. doi: 10.1128/jb.00324-24. Epub 2024 Dec 5.
2
Insights into mechanisms of ubiquitin ADP-ribosylation reversal.泛素ADP核糖基化逆转机制的见解。
Biochem Soc Trans. 2024 Dec 19;52(6):2525-2537. doi: 10.1042/BST20240896.
6
Non-lysine ubiquitylation: Doing things differently.非赖氨酸泛素化:以不同方式行事。
Front Mol Biosci. 2022 Sep 19;9:1008175. doi: 10.3389/fmolb.2022.1008175. eCollection 2022.
9
Post-translational regulation of ubiquitin signaling.泛素信号的翻译后调控
J Cell Biol. 2019 Jun 3;218(6):1776-1786. doi: 10.1083/jcb.201902074. Epub 2019 Apr 18.
10
Uncovering the Structural Basis of a New Twist in Protein Ubiquitination.揭示蛋白质泛素化新 twists 的结构基础。
Trends Biochem Sci. 2019 May;44(5):467-477. doi: 10.1016/j.tibs.2018.11.006. Epub 2018 Dec 21.

本文引用的文献

6
Substrate specificity of the ubiquitin and Ubl proteases.泛素和泛素样蛋白酶的底物特异性。
Cell Res. 2016 Apr;26(4):441-56. doi: 10.1038/cr.2016.38. Epub 2016 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验