Suppr超能文献

交流:宏观空化理论中的扩散张量。

Communication: On the diffusion tensor in macroscopic theory of cavitation.

机构信息

Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

出版信息

J Chem Phys. 2017 Aug 14;147(6):061101. doi: 10.1063/1.4997934.

Abstract

The classical description of nucleation of cavities in a stretched fluid relies on a one-dimensional Fokker-Planck equation (FPE) in the space of their sizes r, with the diffusion coefficient D(r) constructed for all r from macroscopic hydrodynamics and thermodynamics, as shown by Zeldovich. When additional variables (e.g., vapor pressure) are required to describe the state of a bubble, a similar approach to construct a diffusion tensor D^ generally works only in the direct vicinity of the thermodynamic saddle point corresponding to the critical nucleus. It is shown, nevertheless, that "proper" kinetic variables to describe a cavity can be selected, allowing to introduce D^ in the entire domain of parameters. In this way, for the first time, complete FPE's are constructed for viscous volatile and inertial fluids. In the former case, the FPE with symmetric D^ is solved numerically. Alternatively, in the case of an inertial fluid, an equivalent Langevin equation is considered; results are compared with analytics. The suggested approach is quite general and can be applied beyond the cavitation problem.

摘要

在拉伸流体中空穴成核的经典描述依赖于其大小 r 的一维福克-普朗克方程(FPE),其中扩散系数 D(r) 由泽尔多维奇(Zeldovich)从宏观流体力学和热力学构建,适用于所有 r。当需要附加变量(例如蒸汽压力)来描述气泡的状态时,通常仅在对应于临界核的热力学鞍点的直接邻近区域内,构造扩散张量 D^ 的类似方法才有效。然而,已经表明,可以选择“适当”的动力学变量来描述空穴,从而可以在整个参数域中引入 D^。通过这种方式,首次为粘性挥发和惯性流体构建了完整的 FPE。在前一种情况下,通过数值方法求解具有对称 D^ 的 FPE。或者,在惯性流体的情况下,考虑等效的朗之万方程;将结果与分析进行比较。所提出的方法非常通用,可以应用于除空化问题以外的其他问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验