Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9284-9289. doi: 10.1073/pnas.1706105114. Epub 2017 Aug 15.
The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, [Formula: see text], is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent [Formula: see text] We build a microscopic theory for the nonmonotonicity of [Formula: see text], which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts [Formula: see text], and the sliding velocity, in terms of [Formula: see text] Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.
颗粒物质的宏观摩擦力通常会随着流速的增加而减弱,从而导致潜在的灾难性的间歇性现象,包括地震和山体滑坡。我们从理论和数值上研究了简单的颗粒物质中的这种现象。我们表明,即使动态和静态微观摩擦系数相同,也会出现速度减弱现象,即摩擦力定律呈非单调行为[公式:见文本],但对于较软的颗粒,这种现象会消失。我们认为这种不稳定性是由内生源声噪声引起的,这种噪声往往会使接触滑动,从而导致流速加快和噪声增加。我们表明,软点或材料中的激活动区对应于即将滑动的滚动接触,其密度由一个非平凡的指数[公式:见文本]来描述。我们建立了一个关于[公式:见文本]的非单调行为的微观理论,该理论还预测了声噪声、滑动接触分数[公式:见文本]和滑动速度的标度行为,这些量可以用[公式:见文本]来表示。令人惊讶的是,当颗粒变得无限硬时,这些量没有极限,这在数值上得到了证实。我们的分析合理化了以前无法解释的观察结果,并做出了可实验验证的预测。