Suppr超能文献

摇晃与搅动:随机组织降低颗粒悬浮液的粘度与耗散。

Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions.

作者信息

Ness Christopher, Mari Romain, Cates Michael E

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.

Department of Applied Mathematics and Theoretical Physics (DAMTP), Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.

出版信息

Sci Adv. 2018 Mar 30;4(3):eaar3296. doi: 10.1126/sciadv.aar3296. eCollection 2018 Mar.

Abstract

The viscosity of suspensions of large (≥10 μm) particles diverges at high solid fractions due to proliferation of frictional particle contacts. Reducing friction, to allow or improve flowability, is usually achieved by tuning the composition, either by changing particle sizes and shapes or by adding lubricating molecules. We present numerical simulations that demonstrate a complementary approach whereby the viscosity divergence is shifted by driven flow tuning, using superimposed shear oscillations in various configurations to facilitate a primary flow. The oscillations drive the suspension toward an out-of-equilibrium, absorbing state phase transition, where frictional particle contacts that dominate the viscosity are reduced in a self-organizing manner. The method can allow otherwise jammed states to flow; even for unjammed states, it can substantially decrease the energy dissipated per unit strain. This creates a practicable route to flow enhancement across a broad range of suspensions where compositional tuning is undesirable or problematic.

摘要

大尺寸(≥10μm)颗粒悬浮液的粘度在高固相分数下会因摩擦颗粒接触的增加而发散。为了允许或改善流动性而降低摩擦,通常是通过调整组成来实现的,要么改变颗粒尺寸和形状,要么添加润滑分子。我们进行了数值模拟,展示了一种互补方法,即通过驱动流调整来改变粘度发散,使用各种配置下的叠加剪切振荡来促进主流。这些振荡将悬浮液驱动至非平衡吸收态相变,在该相变中,主导粘度的摩擦颗粒接触以自组织方式减少。该方法可以使原本堵塞的状态流动起来;即使对于未堵塞的状态,它也可以大幅降低单位应变下耗散的能量。这为在广泛的悬浮液中增强流动性创造了一条切实可行的途径,而在这些悬浮液中,组成调整是不可取的或存在问题的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28c/5903884/303eaa4253c6/aar3296-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验