Suppr超能文献

鳃运动神经元在控制斑马鱼幼体食物摄取中的作用。

Role of branchiomotor neurons in controlling food intake of zebrafish larvae.

作者信息

Allen James R, Bhattacharyya Kiran D, Asante Emilia, Almadi Badr, Schafer Kyle, Davis Jeremy, Cox Jane, Voigt Mark, Viator John A, Chandrasekhar Anand

机构信息

a Division of Biological Sciences, Bond Life Sciences Center , University of Missouri , Columbia , MO , USA.

b Department of Biological Engineering, Bond Life Sciences Center , University of Missouri , Columbia , MO , USA.

出版信息

J Neurogenet. 2017 Sep;31(3):128-137. doi: 10.1080/01677063.2017.1358270. Epub 2017 Aug 16.

Abstract

The physical act of eating or feeding involves the coordinated action of several organs like eyes and jaws, and associated neural networks. Moreover, the activity of the neural networks controlling jaw movements (branchiomotor circuits) is regulated by the visual, olfactory, gustatory and hypothalamic systems, which are largely well characterized at the physiological level. By contrast, the behavioral output of the branchiomotor circuits and the functional consequences of disruption of these circuits by abnormal neural development are poorly understood. To begin to address these questions, we sought to evaluate the feeding ability of zebrafish larvae, a direct output of the branchiomotor circuits, and developed a qualitative assay for measuring food intake in zebrafish larvae at 7 days post-fertilization. We validated the assay by examining the effects of ablating the branchiomotor neurons. Metronidazole-mediated ablation of nitroreductase-expressing branchiomotor neurons resulted in a predictable reduction in food intake without significantly affecting swimming ability, indicating that the assay is robust. Laser-mediated ablation of trigeminal motor neurons resulted in a significant decrease in food intake, indicating that the assay is sensitive. Importantly, in larvae of a genetic mutant with severe loss of branchiomotor neurons, food intake was abolished. These studies establish a foundation for dissecting the neural circuits driving a motor behavior essential for survival.

摘要

进食或喂食的身体行为涉及眼睛和颌骨等多个器官以及相关神经网络的协同作用。此外,控制颌骨运动的神经网络(鳃运动回路)的活动受视觉、嗅觉、味觉和下丘脑系统调节,这些系统在生理水平上大多已得到充分表征。相比之下,鳃运动回路的行为输出以及异常神经发育对这些回路的破坏所产生的功能后果却知之甚少。为了开始解决这些问题,我们试图评估斑马鱼幼体的进食能力,这是鳃运动回路的直接输出,并开发了一种定性分析方法来测量受精后7天斑马鱼幼体的食物摄入量。我们通过检查鳃运动神经元消融的影响来验证该分析方法。甲硝唑介导的表达硝基还原酶的鳃运动神经元消融导致食物摄入量可预测地减少,而对游泳能力没有显著影响,这表明该分析方法是可靠的。激光介导的三叉神经运动神经元消融导致食物摄入量显著减少,表明该分析方法是敏感的。重要的是,在鳃运动神经元严重缺失的基因变异幼体中,食物摄入被消除。这些研究为剖析驱动生存所必需的运动行为的神经回路奠定了基础。

相似文献

9
Development of branchiomotor neurons in zebrafish.斑马鱼中鳃运动神经元的发育
Development. 1997 Jul;124(13):2633-44. doi: 10.1242/dev.124.13.2633.

本文引用的文献

6
A high-throughput assay for quantifying appetite and digestive dynamics.一种用于量化食欲和消化动态的高通量检测方法。
Am J Physiol Regul Integr Comp Physiol. 2015 Aug 15;309(4):R345-57. doi: 10.1152/ajpregu.00225.2015. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验