Suppr超能文献

健康对照者和中风患者上肢运动原语的捕捉、学习与分类

Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients.

作者信息

Guerra Jorge, Uddin Jasim, Nilsen Dawn, Mclnerney James, Fadoo Ammarah, Omofuma Isirame B, Hughes Shatif, Agrawal Sunil, Allen Peter, Schambra Heidi M

出版信息

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:547-554. doi: 10.1109/ICORR.2017.8009305.

Abstract

There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation.

摘要

目前还没有实用的工具来识别上肢(UE)的功能性运动。这种缺失限制了中风康复患者的精确治疗剂量。在这项原理验证研究中,我们旨在开发一种准确的方法来对UE功能性运动原语进行分类,这些原语构成了功能性运动。数据由放置在健康老年人和慢性中风患者上身部位的惯性测量单元(IMU)生成。受试者进行了中风后康复训练中常见的活动。数据处理包括使用滑动窗口来获取统计描述符,所得特征由隐马尔可夫模型(HMM)处理。HMM产生的状态似然性由第二个滑动窗口进行分割,并计算其平均值。最终预测结果使用逻辑回归算法映射到人类功能性运动原语。通过留一法分析评估算法性能,该分析确定了其对所有分类原语的敏感性、特异性以及阳性和阴性预测值。在健康对照者和中风参与者中,我们的方法平均以80%的精度识别出训练活动中包含的功能性运动原语。这种方法可能会为中风康复中的功能性运动剂量提供支持。

相似文献

6
Predicting daily use of the affected upper extremity 1 year after stroke.预测中风后1年受影响上肢的日常使用情况。
J Stroke Cerebrovasc Dis. 2015 Feb;24(2):274-83. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.039. Epub 2014 Dec 18.

引用本文的文献

本文引用的文献

2
Constraint-induced movement therapy after stroke.中风后的强制性运动疗法
Lancet Neurol. 2015 Feb;14(2):224-34. doi: 10.1016/S1474-4422(14)70160-7.
3
Recognizing complex upper extremity activities using body worn sensors.使用可穿戴式传感器识别复杂的上肢活动。
PLoS One. 2015 Mar 3;10(3):e0118642. doi: 10.1371/journal.pone.0118642. eCollection 2015.
5
Window size impact in human activity recognition.窗口大小对人类活动识别的影响。
Sensors (Basel). 2014 Apr 9;14(4):6474-99. doi: 10.3390/s140406474.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验