Department of Computer Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
Sensors (Basel). 2023 Sep 11;23(18):7802. doi: 10.3390/s23187802.
This paper proposes a novel approach to tackle the human activity recognition (HAR) problem. Four classes of body movement datasets, namely stand-up, sit-down, run, and walk, are applied to perform HAR. Instead of using vision-based solutions, we address the HAR challenge by implementing a real-time HAR system architecture with a wearable inertial measurement unit (IMU) sensor, which aims to achieve networked sensing and data sampling of human activity, data pre-processing and feature analysis, data generation and correction, and activity classification using hybrid learning models. Referring to the experimental results, the proposed system selects the pre-trained eXtreme Gradient Boosting (XGBoost) model and the Convolutional Variational Autoencoder (CVAE) model as the classifier and generator, respectively, with 96.03% classification accuracy.
本文提出了一种新的方法来解决人体活动识别 (HAR) 问题。应用了四类身体运动数据集,即站立、坐下、跑步和行走,来进行 HAR。我们没有使用基于视觉的解决方案,而是通过实现具有可穿戴惯性测量单元 (IMU) 传感器的实时 HAR 系统架构来解决 HAR 挑战,旨在实现人体活动的网络传感和数据采样、数据预处理和特征分析、数据生成和校正,以及使用混合学习模型进行活动分类。参考实验结果,所提出的系统选择了预训练的极端梯度提升 (XGBoost) 模型和卷积变分自动编码器 (CVAE) 模型作为分类器和生成器,分类准确率为 96.03%。