Suppr超能文献

基于 IMU 的 HAR 的混合学习模型,具有特征分析和数据校正功能。

Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction.

机构信息

Department of Computer Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan.

Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan.

出版信息

Sensors (Basel). 2023 Sep 11;23(18):7802. doi: 10.3390/s23187802.

Abstract

This paper proposes a novel approach to tackle the human activity recognition (HAR) problem. Four classes of body movement datasets, namely stand-up, sit-down, run, and walk, are applied to perform HAR. Instead of using vision-based solutions, we address the HAR challenge by implementing a real-time HAR system architecture with a wearable inertial measurement unit (IMU) sensor, which aims to achieve networked sensing and data sampling of human activity, data pre-processing and feature analysis, data generation and correction, and activity classification using hybrid learning models. Referring to the experimental results, the proposed system selects the pre-trained eXtreme Gradient Boosting (XGBoost) model and the Convolutional Variational Autoencoder (CVAE) model as the classifier and generator, respectively, with 96.03% classification accuracy.

摘要

本文提出了一种新的方法来解决人体活动识别 (HAR) 问题。应用了四类身体运动数据集,即站立、坐下、跑步和行走,来进行 HAR。我们没有使用基于视觉的解决方案,而是通过实现具有可穿戴惯性测量单元 (IMU) 传感器的实时 HAR 系统架构来解决 HAR 挑战,旨在实现人体活动的网络传感和数据采样、数据预处理和特征分析、数据生成和校正,以及使用混合学习模型进行活动分类。参考实验结果,所提出的系统选择了预训练的极端梯度提升 (XGBoost) 模型和卷积变分自动编码器 (CVAE) 模型作为分类器和生成器,分类准确率为 96.03%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ac/10537876/a85dd5ea26f9/sensors-23-07802-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验