Suppr超能文献

多模态肌控制:联合力量与肌电图测试。

Multi-modal myocontrol: Testing combined force- and electromyography.

作者信息

Nowak Markus, Eiband Thomas, Castellini Claudio

出版信息

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1364-1368. doi: 10.1109/ICORR.2017.8009438.

Abstract

Myocontrol, that is control of prostheses using bodily signals, has proved in the decades to be a surprisingly hard problem for the scientific community of assistive and rehabilitation robotics. In particular, traditional surface electromyography (sEMG) seems to be no longer enough to guarantee dexterity (i.e., control over several degrees of freedom) and, most importantly, reliability. Multi-modal myocontrol is concerned with the idea of using novel signal gathering techniques as a replacement of, or alongside, sEMG, to provide high-density and diverse signals to improve dexterity and make the control more reliable. In this paper we present an offline and online assessment of multi-modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol. A total number of twenty sEMG and FMG sensors were used simultaneously, in several combined configurations, to predict opening/closing of the hand and activation of two degrees of freedom of the wrist of ten intact subjects. The analysis was targeted at determining the optimal sensor combination and control parameters; the experimental results indicate that sEMG sensors alone perform worst, yielding a nRMSE of 9.1%, while mixing FMG and sEMG or using FMG only reduces the nRMSE to 5.2-6.6%. To validate these results, we engaged the subject with median performance in an online goal-reaching task. Analysis of this further experiment reveals that the online behaviour is similar to the offline one.

摘要

肌电控制,即利用身体信号控制假肢,在过去几十年里已证明对辅助和康复机器人科学领域而言是一个极其棘手的问题。特别是,传统的表面肌电图(sEMG)似乎已不足以确保灵活性(即对多个自由度的控制),而且最重要的是,无法确保可靠性。多模态肌电控制关注的是使用新颖的信号采集技术来替代sEMG或与sEMG一起使用,以提供高密度和多样化的信号,从而提高灵活性并使控制更加可靠。在本文中,我们针对手部和腕部的肌电控制,对多模态表面肌电图和力肌电图(FMG)进行了离线和在线评估。总共同时使用了二十个表面肌电图和力肌电图传感器,采用多种组合配置,来预测十名身体健全受试者的手部开合以及腕部两个自由度的激活情况。分析旨在确定最佳的传感器组合和控制参数;实验结果表明,仅使用表面肌电图传感器的表现最差,归一化均方根误差(nRMSE)为9.1%,而将力肌电图和表面肌电图混合使用或仅使用力肌电图可将归一化均方根误差降低至5.2 - 6.6%。为了验证这些结果,我们让表现中等的受试者参与了一项在线目标达成任务。对这一进一步实验的分析表明,在线行为与离线行为相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验