Suppr超能文献

上肢力量肌电信号采样频率的研究

An Investigation on the Sampling Frequency of the Upper-Limb Force Myographic Signals.

作者信息

Xiao Zhen Gang, Menon Carlo

机构信息

Schools of Mechatronics Systems Engineering and Engineering Science, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada.

出版信息

Sensors (Basel). 2019 May 28;19(11):2432. doi: 10.3390/s19112432.

Abstract

Force myography (FMG) is an emerging method to register muscle activity of a limb using force sensors for human-machine interface and movement monitoring applications. Despite its newly gained popularity among researchers, many of its fundamental characteristics remain to be investigated. The aim of this study is to identify the minimum sampling frequency needed for recording upper-limb FMG signals without sacrificing signal integrity. Twelve healthy volunteers participated in an experiment in which they were instructed to perform rapid hand actions with FMG signals being recorded from the wrist and the bulk region of the forearm. The FMG signals were sampled at 1 kHz with a 16-bit resolution data acquisition device. We downsampled the signals with frequencies ranging from 1 Hz to 500 Hz to examine the discrepancies between the original signals and the downsampled ones. Based on the results, we suggest that FMG signals from the forearm and wrist should be collected with minimum sampling frequencies of 54 Hz and 58 Hz for deciphering isometric actions, and 70 Hz and 84 Hz for deciphering dynamic actions. This fundamental work provides insight into minimum requirements for sampling FMG signals such that the data content of such signals is not compromised.

摘要

力肌动描记法(FMG)是一种新兴的方法,它利用力传感器来记录肢体的肌肉活动,用于人机接口和运动监测应用。尽管它最近在研究人员中受到欢迎,但其许多基本特性仍有待研究。本研究的目的是确定在不牺牲信号完整性的情况下记录上肢FMG信号所需的最低采样频率。12名健康志愿者参与了一项实验,在实验中,他们被要求进行快速手部动作,同时从手腕和前臂的大块区域记录FMG信号。FMG信号通过一个16位分辨率的数据采集设备以1 kHz的频率进行采样。我们将信号以1 Hz至500 Hz的频率进行下采样,以检查原始信号和下采样信号之间的差异。基于这些结果,我们建议,对于前臂和手腕的FMG信号,在解读等长动作时,应分别以54 Hz和58 Hz的最低采样频率进行采集;在解读动态动作时,应分别以70 Hz和84 Hz的最低采样频率进行采集。这项基础工作为FMG信号采样的最低要求提供了见解,从而使此类信号的数据内容不会受到损害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c1/6603778/2754cdfffa56/sensors-19-02432-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验