Suppr超能文献

即时传递熵在心血管和心肺非平稳动力学研究中的应用。

Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.

出版信息

IEEE Trans Biomed Eng. 2018 May;65(5):1077-1085. doi: 10.1109/TBME.2017.2740259. Epub 2017 Aug 15.

Abstract

OBJECTIVE

Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions.

METHODS

We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance.

RESULTS AND CONCLUSION

Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling.

SIGNIFICANCE

This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).

摘要

目的

转移熵(TE)的度量可以量化两个复杂系统之间的方向和强度耦合。标准方法假设观测值是稳定的,因此无法以高时间分辨率跟踪非线性信息传递的时变变化。在这项研究中,我们旨在定义和验证新的瞬时 TE 度量,以提供对复杂非平稳心肺相互作用的改进评估。

方法

我们在这里提出了一种新的瞬时点过程 TE(ipTE),并验证了其在心血管和心肺动力学中的应用评估。具体来说,心跳和呼吸动力学通过离散时间序列进行特征描述,并通过概率密度函数进行建模,该函数预测下一个生理事件的时间作为过去历史的函数。同样,也对心跳和血压动力学之间的非平稳相互作用进行了特征描述。此外,我们提出了一种新的信息传递度量,即瞬时点过程信息传递(ipInfTr),它是直接从基于点过程的柯尔莫哥洛夫-斯米尔诺夫距离定义中推导出来的。

结果和结论

对合成数据以及健康受试者在进行姿势变化时采集的实验数据的分析证实,ipTE 以及 ipInfTr 度量能够动态跟踪生理系统耦合的变化。

意义

这种新方法为涉及心血管健康和疾病中多变量自主动力学的隐藏、瞬态、非平稳生理状态的研究开辟了新途径。该方法还可以针对复杂多系统生理学(例如,大脑-心脏或更一般地说,大脑-身体相互作用)的研究进行定制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验