Suppr超能文献

[转移熵算法的研究进展与应用]

[Research progress and application of transfer entropy algorithm].

作者信息

Li Tianxiang, Li Shuangyan

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):612-619. doi: 10.7507/1001-5515.202109067.

Abstract

In recent years, exploring the physiological and pathological mechanisms of brain functional integration from the neural network level has become one of the focuses of neuroscience research. Due to the non-stationary and nonlinear characteristics of neural signals, its linear characteristics are not sufficient to fully explain the potential neurophysiological activity mechanism in the implementation of complex brain functions. In order to overcome the limitation that the linear algorithm cannot effectively analyze the nonlinear characteristics of signals, researchers proposed the transfer entropy (TE) algorithm. In recent years, with the introduction of the concept of brain functional network, TE has been continuously optimized as a powerful tool for nonlinear time series multivariate analysis. This paper first introduces the principle of TE algorithm and the research progress of related improved algorithms, discusses and compares their respective characteristics, and then summarizes the application of TE algorithm in the field of electrophysiological signal analysis. Finally, combined with the research progress in recent years, the existing problems of TE are discussed, and the future development direction is prospected.

摘要

近年来,从神经网络层面探索大脑功能整合的生理和病理机制已成为神经科学研究的重点之一。由于神经信号具有非平稳和非线性特征,其线性特征不足以充分解释复杂脑功能实现过程中的潜在神经生理活动机制。为克服线性算法无法有效分析信号非线性特征的局限性,研究人员提出了转移熵(TE)算法。近年来,随着脑功能网络概念的引入,TE作为一种强大的非线性时间序列多变量分析工具不断得到优化。本文首先介绍TE算法的原理及相关改进算法的研究进展,讨论并比较它们各自的特点,然后总结TE算法在电生理信号分析领域的应用。最后,结合近年来的研究进展,探讨TE存在的问题,并展望其未来发展方向。

相似文献

1
[Research progress and application of transfer entropy algorithm].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):612-619. doi: 10.7507/1001-5515.202109067.
2
[Research progress on multiscale entropy algorithm and its application in neural signal analysis].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Jun 25;37(3):541-548. doi: 10.7507/1001-5515.201908044.
4
Exploring neural directed interactions with transfer entropy based on an adaptive kernel density estimator.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4342-5. doi: 10.1109/EMBC.2013.6610507.
6
Two step transfer entropy - An estimator of delayed directional couplings between multivariate EEG time series.
Comput Biol Med. 2016 Dec 1;79:110-122. doi: 10.1016/j.compbiomed.2016.10.010. Epub 2016 Oct 14.
7
Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to characterize directed connectivity in large-scale brain networks.
Neuroimage. 2017 Aug 1;156:249-264. doi: 10.1016/j.neuroimage.2017.05.047. Epub 2017 May 21.
8
Optimization of relative parameters in transfer entropy estimation and application to corticomuscular coupling in humans.
J Neurosci Methods. 2018 Oct 1;308:276-285. doi: 10.1016/j.jneumeth.2018.07.004. Epub 2018 Jul 5.
9
The influence of filtering and downsampling on the estimation of transfer entropy.
PLoS One. 2017 Nov 17;12(11):e0188210. doi: 10.1371/journal.pone.0188210. eCollection 2017.
10
Inverting Monotonic Nonlinearities by Entropy Maximization.
PLoS One. 2016 Oct 25;11(10):e0165288. doi: 10.1371/journal.pone.0165288. eCollection 2016.

本文引用的文献

1
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference.
Sci Rep. 2021 Apr 19;11(1):8423. doi: 10.1038/s41598-021-87818-3.
2
Prefrontal network dysfunctions in rapid eye movement sleep behavior disorder.
Parkinsonism Relat Disord. 2021 Apr;85:72-77. doi: 10.1016/j.parkreldis.2021.03.005. Epub 2021 Mar 13.
3
Topological Abnormalities of Functional Brain Network in Early-Stage Parkinson's Disease Patients With Mild Cognitive Impairment.
Front Neurosci. 2020 Dec 21;14:616872. doi: 10.3389/fnins.2020.616872. eCollection 2020.
5
6
Synchronization Stability Model of Complex Brain Networks: An EEG Study.
Front Psychiatry. 2020 Dec 4;11:571068. doi: 10.3389/fpsyt.2020.571068. eCollection 2020.
7
Nonlinear System Identification of Neural Systems from Neurophysiological Signals.
Neuroscience. 2021 Mar 15;458:213-228. doi: 10.1016/j.neuroscience.2020.12.001. Epub 2020 Dec 11.
10
Impact of Brain Surface Boundary Conditions on Electrophysiology and Implications for Electrocorticography.
Front Neurosci. 2020 Aug 7;14:763. doi: 10.3389/fnins.2020.00763. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验