Suppr超能文献

快速开放式行人再识别。

Fast Open-World Person Re-Identification.

出版信息

IEEE Trans Image Process. 2018 May;27(5):2286-2300. doi: 10.1109/TIP.2017.2740564. Epub 2017 Aug 16.

Abstract

Existing person re-identification (re-id) methods typically assume that: 1) any probe person is guaranteed to appear in the gallery target population during deployment (i.e., closed-world) and 2) the probe set contains only a limited number of people (i.e., small search scale). Both assumptions are artificial and breached in real-world applications, since the probe population in target people search can be extremely vast in practice due to the ambiguity of probe search space boundary. Therefore, it is unrealistic that any probe person is assumed as one target people, and a large-scale search in person images is inherently demanded. In this paper, we introduce a new person re-id search setting, called large scale open-world (LSOW) re-id, characterized by huge size probe images and open person population in search thus more close to practical deployments. Under LSOW, the under-studied problem of person re-id efficiency is essential in addition to that of commonly studied re-id accuracy. We, therefore, develop a novel fast person re-id method, called Cross-view Identity Correlation and vErification (X-ICE) hashing, for joint learning of cross-view identity representation binarisation and discrimination in a unified manner. Extensive comparative experiments on three large-scale benchmarks have been conducted to validate the superiority and advantages of the proposed X-ICE method over a wide range of the state-of-the-art hashing models, person re-id methods, and their combinations.

摘要

现有的人重识别 (re-id) 方法通常假设:1) 任何探测人在部署期间都保证出现在图库目标人群中(即封闭世界),2) 探测集只包含有限数量的人(即小搜索规模)。这两个假设都是人为的,在实际应用中被打破了,因为在目标人群搜索中,探测人群实际上可能非常庞大,因为探测搜索空间边界的模糊性。因此,假设任何探测人都是一个目标人是不现实的,并且需要对人的图像进行大规模搜索。在本文中,我们引入了一种新的人重识别搜索设置,称为大规模开放世界 (LSOW) 人重识别,其特点是探测图像的尺寸巨大,搜索中的人群开放,因此更接近实际部署。在 LSOW 下,除了通常研究的重新识别准确性问题外,研究人员还需要研究人员重新识别效率这一被忽视的问题。因此,我们开发了一种新的快速人员重新识别方法,称为交叉视图身份关联和验证 (X-ICE) 散列,用于以统一的方式联合学习交叉视图身份表示的二值化和区分。在三个大规模基准上进行了广泛的对比实验,以验证所提出的 X-ICE 方法相对于广泛的最先进的散列模型、人员重新识别方法及其组合的优越性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验