Suppr超能文献

如上所述,反之亦然? 对脑机接口中逆模型的理解。

As above, so below? Towards understanding inverse models in BCI.

出版信息

J Neural Eng. 2018 Feb;15(1):012001. doi: 10.1088/1741-2552/aa86d0.

Abstract

OBJECTIVE

In brain-computer interfaces (BCI), measurements of the user's brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume.

APPROACH

We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG.

MAIN RESULTS

Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches.

SIGNIFICANCE

The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

摘要

目的

在脑机接口(BCI)中,对用户大脑活动的测量被分类为计算机的命令。基于 EEG 的 BCI 中,分类现象的起源通常被认为是在皮质体积中空间定位并在 EEG 中混合。我们研究通过重建体积中的源活动是否可以获得更准确的 BCI。

方法

我们对比了生理驱动的源重建与通过统计机器学习获得的数据驱动表示。我们在一个常见的线性字典框架中解释这些方法,并回顾获得字典参数的不同方法。我们考虑源重建对 BCI 分类的一些主要困难的影响,即信息损失、特征选择和 EEG 的非平稳性。

主要结果

我们的分析表明,这些方法主要在参数估计方面有所不同。因此,如果不使用机器学习或机器学习产生的参数不太理想,则生理源重建可能会提高 BCI 的准确性。我们认为,表面 EEG 分类的困难仍然可能存在于重建的体积中,并且仍然需要数据驱动技术。最后,我们提供了一些比较方法的建议。

意义

本工作说明了源重建与基于机器学习的 EEG 数据表示方法之间的关系。提供的分析和讨论应有助于未来理解、应用、比较和改进这些技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验