Suppr超能文献

基于遗传算法优化的精确 EEG 源估计最小电极子集最优选择的自动化方法。

Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization.

机构信息

Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway.

Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira, Colombia.

出版信息

Sci Rep. 2022 Jul 2;12(1):11221. doi: 10.1038/s41598-022-15252-0.

Abstract

High-density Electroencephalography (HD-EEG) has proven to be the EEG montage that estimates the neural activity inside the brain with highest accuracy. Multiple studies have reported the effect of electrode number on source localization for specific sources and specific electrode configurations. The electrodes for these configurations are often manually selected to uniformly cover the entire head, going from 32 to 128 electrodes, but electrode configurations are not often selected according to their contribution to estimation accuracy. In this work, an optimization-based study is proposed to determine the minimum number of electrodes that can be used and to identify the optimal combinations of electrodes that can retain the localization accuracy of HD-EEG reconstructions. This optimization approach incorporates scalp landmark positions of widely used EEG montages. In this way, a systematic search for the minimum electrode subset is performed for single- and multiple-source localization problems. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) combined with source reconstruction methods is used to formulate a multi-objective optimization problem that concurrently minimizes (1) the localization error for each source and (2) the number of required EEG electrodes. The method can be used for evaluating the source localization quality of low-density EEG systems (e.g. consumer-grade wearable EEG). We performed an evaluation over synthetic and real EEG datasets with known ground-truth. The experimental results show that optimal subsets with 6 electrodes can attain an equal or better accuracy than HD-EEG (with more than 200 channels) for a single source case. This happened when reconstructing a particular brain activity in more than 88% of the cases in synthetic signals and 63% in real signals, and in more than 88% and 73% of cases when considering optimal combinations with 8 channels. For a multiple-source case of three sources (only with synthetic signals), it was found that optimized combinations of 8, 12 and 16 electrodes attained an equal or better accuracy than HD-EEG with 231 electrodes in at least 58%, 76%, and 82% of cases respectively. Additionally, for such electrode numbers, lower mean errors and standard deviations than with 231 electrodes were obtained.

摘要

高密度脑电图(HD-EEG)已被证明是一种能够以最高精度估计大脑内部神经活动的脑电图导联方式。多项研究报告了电极数量对特定源和特定电极配置的源定位的影响。这些配置的电极通常是手动选择的,以均匀覆盖整个头部,从 32 个电极到 128 个电极不等,但电极配置通常不是根据它们对估计精度的贡献来选择的。在这项工作中,提出了一种基于优化的研究方法,以确定可以使用的最小电极数量,并确定可以保留 HD-EEG 重建定位准确性的最佳电极组合。这种优化方法结合了广泛使用的脑电图导联的头皮地标位置。通过这种方式,针对单源和多源定位问题,对最小电极子集进行了系统搜索。非支配排序遗传算法 II(NSGA-II)与源重建方法相结合,用于制定一个多目标优化问题,该问题同时最小化(1)每个源的定位误差和(2)所需 EEG 电极的数量。该方法可用于评估低密度 EEG 系统(例如消费级可穿戴 EEG)的源定位质量。我们在具有已知真实值的合成和真实 EEG 数据集上进行了评估。实验结果表明,对于单个源情况,具有 6 个电极的最优子集可以达到与 HD-EEG(具有 200 多个通道)相同或更好的准确性。在合成信号中,超过 88%的情况下可以重建特定的脑活动,而在真实信号中,有 63%的情况下可以达到这种效果,并且在考虑具有 8 个通道的最优组合时,有 88%和 73%的情况下可以达到这种效果。对于三个源的多源情况(仅使用合成信号),发现具有 8、12 和 16 个电极的优化组合在至少 58%、76%和 82%的情况下达到了与具有 231 个电极的 HD-EEG 相同或更好的准确性。此外,对于这些电极数量,可以获得比具有 231 个电极更低的平均误差和标准偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验