Suppr超能文献

基于二维信号表示的脑电信号分类的拟概率分布模型。

A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation.

机构信息

Department of Computer Engineering, Karadeniz Technical University, Trabzon 61080, Turkey.

Department of Computer Engineering, Karadeniz Technical University, Trabzon 61080, Turkey.

出版信息

Comput Methods Programs Biomed. 2018 Aug;162:187-196. doi: 10.1016/j.cmpb.2018.05.026. Epub 2018 May 17.

Abstract

BACKGROUND AND OBJECTIVE

Electroencephalography (EEG) is a method that measures and records the electrical activity of the human brain. These biomedical signals are currently being actively used in many research fields and have a wide range of potential uses in brain-computer interfaces (BCIs). The main aim of the present work is to improve the classification of EEG patterns for EEG-based BCI systems.

METHODS

In this paper, we presented a classification approach for EEG-based BCIs. For this purpose, in the training stage, 2-D representations of signals were extracted and a quasi-probabilistic learning model was built for binary classification. In the testing stage, the estimation of class membership probability was performed with an untrained sub-data set. To confirm the validity of the proposed method, we conducted experiments on the BCI Competition 2003 Data Sets (Ia and Ib). The classification performances were evaluated for accuracy, sensitivity, specificity and F-measure measurements using the five-fold leave-one-out cross-validation technique ten times.

RESULTS

The proposed method yielded an average classification accuracy of 95.54% (with sensitivity and specificity of 100.00% and 91.80% respectively) for Data Set Ia and accuracy of 72.37% (with sensitivity and specificity of 75.76% and 69.77% respectively) for Data Set Ib, which are the highest rates ever reported for both data sets.

CONCLUSIONS

It is apparent from the results that the proposed method has potential and can assist in the development of effective EEG-based BCIs. The advantage of this method lies in its relatively simple algorithm and easy computational implementation. The experimental results also showed that the selection of relevant channels is an important step in developing efficient EEG-based BCI systems.

摘要

背景与目的

脑电图(EEG)是一种测量和记录人脑电活动的方法。这些生物医学信号目前在许多研究领域中得到了积极应用,并在脑机接口(BCI)中有广泛的潜在用途。本工作的主要目的是提高基于 EEG 的 BCI 系统中 EEG 模式的分类。

方法

在本文中,我们提出了一种基于 EEG 的 BCI 的分类方法。为此,在训练阶段,提取了信号的 2-D 表示,并为二进制分类构建了准概率学习模型。在测试阶段,使用未训练的子数据集进行类成员概率的估计。为了验证所提出方法的有效性,我们在 BCI 竞赛 2003 数据集(Ia 和 Ib)上进行了实验。使用五折交叉验证技术进行了十次实验,通过准确率、敏感度、特异性和 F 度量来评估分类性能。

结果

所提出的方法在数据集 Ia 上的平均分类准确率为 95.54%(敏感度和特异性分别为 100.00%和 91.80%),在数据集 Ib 上的准确率为 72.37%(敏感度和特异性分别为 75.76%和 69.77%),这是两个数据集上的最高记录。

结论

结果表明,所提出的方法具有潜力,可以帮助开发有效的基于 EEG 的 BCI。该方法的优点在于其相对简单的算法和易于计算的实现。实验结果还表明,相关通道的选择是开发高效基于 EEG 的 BCI 系统的重要步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验