1 BIO5 Institute, 8041 University of Arizona , Tucson, AZ, USA.
2 Undergraduate Biology Research Program, 8041 University of Arizona , Tucson, AZ, USA.
ASN Neuro. 2017 Jul-Aug;9(4):1759091417724915. doi: 10.1177/1759091417724915.
Genetic and pathologic data suggest that amyloid beta (Aβ), produced by processing of the amyloid precursor protein, is a major initiator of Alzheimer's disease (AD). To gain new insights into Aβ modulation, we sought to harness the power of the coevolution between the neurotropic parasite Toxoplasma gondii and the mammalian brain. Two prior studies attributed Toxoplasma-associated protection against Aβ to increases in anti-inflammatory cytokines (TGF-β and IL-10) and infiltrating phagocytic monocytes. These studies only used one Toxoplasma strain making it difficult to determine if the noted changes were associated with Aβ protection or simply infection. To address this limitation, we infected a third human amyloid precursor protein AD mouse model (J20) with each of the genetically distinct, canonical strains of Toxoplasma (Type I, Type II, or Type III). We then evaluated the central nervous system (CNS) for Aβ deposition, immune cell responses, global cytokine environment, and parasite burden. We found that only Type II infection was protective against Aβ deposition despite both Type II and Type III strains establishing a chronic CNS infection and inflammatory response. Compared with uninfected and Type I-infected mice, both Type II- and Type III-infected mice showed increased numbers of CNS T cells and microglia and elevated pro-inflammatory cytokines, but neither group showed a >2-fold elevation of TGF-β or IL-10. These data suggest that we can now use our identification of protective (Type II) and nonprotective (Type III) Toxoplasma strains to determine what parasite and host factors are linked to decreased Aβ burden rather than simply with infection.
遗传和病理学数据表明,淀粉样蛋白β(Aβ)是由淀粉样前体蛋白处理产生的,是阿尔茨海默病(AD)的主要启动子。为了深入了解 Aβ 的调节机制,我们试图利用神经滋养寄生虫弓形虫和哺乳动物大脑之间的共同进化的力量。之前有两项研究将弓形虫与 Aβ 相关的保护作用归因于抗炎细胞因子(TGF-β和 IL-10)和浸润性吞噬性单核细胞的增加。这些研究仅使用了一种弓形虫株,因此很难确定所观察到的变化是与 Aβ 保护相关还是仅仅与感染相关。为了解决这个局限性,我们用三种不同的、典型的弓形虫株(I 型、II 型或 III 型)感染了第三种人类淀粉样前体蛋白 AD 小鼠模型(J20)。然后,我们评估了中枢神经系统(CNS)中 Aβ 的沉积、免疫细胞反应、全身细胞因子环境和寄生虫负担。我们发现,只有 II 型感染具有保护作用,可以防止 Aβ 沉积,尽管 II 型和 III 型菌株都在中枢神经系统中建立了慢性感染和炎症反应。与未感染和 I 型感染的小鼠相比,II 型和 III 型感染的小鼠的中枢神经系统 T 细胞和小胶质细胞数量均增加,促炎细胞因子水平升高,但两组 TGF-β或 IL-10 的水平均未升高超过 2 倍。这些数据表明,我们现在可以利用我们对保护性(II 型)和非保护性(III 型)弓形虫株的鉴定,来确定与 Aβ 负担减少相关的寄生虫和宿主因素,而不仅仅是与感染相关。