Martín-Davison Alex San, Pérez-Díaz Ricardo, Soto Flavia, Madrid-Espinoza José, González-Villanueva Enrique, Pizarro Lorena, Norambuena Lorena, Tapia Jaime, Tajima Hiromi, Blumwald Eduardo, Ruiz-Lara Simón
Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
Plant Sci. 2017 Oct;263:1-11. doi: 10.1016/j.plantsci.2017.06.007. Epub 2017 Jun 28.
Physiological responses of plants to salinity stress requires the coordinated activation of many genes. A salt-induced gene was isolated from roots of the wild tomato species Solanum chilense and named SchRabGDI1 because it encodes a protein with high identity to GDP dissociation inhibitors of plants. These proteins are regulators of the RabGTPase cycle that play key roles in intracellular vesicular trafficking. The expression pattern of SchRabGDI1 showed an early up-regulation in roots and leaves under salt stress. Functional activity of SchRabGDI1 was shown by restoring the defective phenotype of the yeast sec19-1 mutant and the capacity of SchRabGDI1 to interact with RabGTPase was demonstrated through BiFC assays. Expression of SchRabGDI1 in Arabidopsis thaliana plants resulted in increased salt tolerance. Also, the root cells of transgenic plants showed higher rate of endocytosis under normal growth conditions and higher accumulation of sodium in vacuoles and small vesicular structures under salt stress than wild type. Our results suggest that in salt tolerant species such as S. chilense, bulk endocytosis is one of the early mechanisms to avoid salt stress, which requires the concerted expression of regulatory genes involved in vesicular trafficking of the endocytic pathway.
植物对盐胁迫的生理反应需要许多基因的协同激活。从野生番茄物种智利番茄(Solanum chilense)的根中分离出一个盐诱导基因,命名为SchRabGDI1,因为它编码一种与植物GDP解离抑制剂具有高度同源性的蛋白质。这些蛋白质是RabGTPase循环的调节因子,在细胞内囊泡运输中起关键作用。SchRabGDI1的表达模式显示在盐胁迫下根和叶中早期上调。通过恢复酵母sec19-1突变体的缺陷表型证明了SchRabGDI1的功能活性,并通过双分子荧光互补分析(BiFC)证明了SchRabGDI1与RabGTPase相互作用的能力。SchRabGDI1在拟南芥植物中的表达导致耐盐性增加。此外,转基因植物的根细胞在正常生长条件下显示出更高的内吞速率,并且在盐胁迫下比野生型在液泡和小泡状结构中积累更多的钠。我们的结果表明,在像智利番茄这样的耐盐物种中,批量内吞是避免盐胁迫的早期机制之一,这需要参与内吞途径囊泡运输的调节基因的协同表达。