Suppr超能文献

使用简化的CLARITY方法和片上显微镜对光学透明组织进行3D成像。

3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy.

作者信息

Zhang Yibo, Shin Yoonjung, Sung Kevin, Yang Sam, Chen Harrison, Wang Hongda, Teng Da, Rivenson Yair, Kulkarni Rajan P, Ozcan Aydogan

机构信息

Electrical Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Bioengineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Sci Adv. 2017 Aug 11;3(8):e1700553. doi: 10.1126/sciadv.1700553. eCollection 2017 Aug.

Abstract

High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3'-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.

摘要

使用传统免疫组织化学技术对组织样本进行高通量切片和光学成像在资源有限的地区可能成本高昂且难以实现。我们展示了利用无透镜全息芯片上显微镜对光学透明组织进行三维(3D)成像和表型分析,作为传统方法的一种低成本、简单且高通量的替代方案。组织样本使用简化的CLARITY方法进行被动清除,并用3,3'-二氨基联苯胺染色以靶向感兴趣的细胞,从而实现厚样本的明场光学成像和3D切片。无透镜计算显微镜使用像素超分辨率和多高度相位恢复算法在整个清除的组织中进行数字重新聚焦,并获得样本的复值图像的3D堆栈,其中包含相位和幅度信息。我们通过找到最佳照明波长、组织厚度、样本制备参数以及无透镜图像采集的高度数量来优化组织清除和成像系统,并实施基于稀疏性的去噪算法,以最大化成像体积并最小化采集的数据量,同时保持重建图像的对比度噪声比。作为概念验证,我们在200μm厚的清除小鼠脑组织中,在20.5mm的宽视场范围内实现了神经元的3D成像。与对相同样本体积进行成像的传统扫描光学显微镜相比,无透镜显微镜的原始数据量也减少了一个数量级以上。由于成本低、简单、高通量且数据高效,我们相信这种基于CLARITY的计算组织成像技术在低资源环境下的生物医学诊断和研究中可以找到众多应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6dd/5553818/2b98d9aefe30/1700553-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验