Suppr超能文献

基于反射的无透镜暗场显微镜(RDFM)在互补金属氧化物半导体(CMOS)芯片上的应用。

Lensless, reflection-based dark-field microscopy (RDFM) on a CMOS chip.

作者信息

Imanbekova Meruyert, Perumal Ayyappasamy Sudalaiyadum, Kheireddine Sara, Nicolau Dan V, Wachsmann-Hogiu Sebastian

机构信息

Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.

Equal contributions.

出版信息

Biomed Opt Express. 2020 Aug 10;11(9):4942-4959. doi: 10.1364/BOE.394615. eCollection 2020 Sep 1.

Abstract

We present for the first time a lens-free, oblique illumination imaging platform for on-sensor dark- field microscopy and shadow-based 3D object measurements. It consists of an LED point source that illuminates a 5-megapixel, 1.4 µm pixel size, back-illuminated CMOS sensor at angles between 0° and 90°. Analytes (polystyrene beads, microorganisms, and cells) were placed and imaged directly onto the sensor. The spatial resolution of this imaging system is limited by the pixel size (∼1.4 µm) over the whole area of the sensor (3.6×2.73 mm). We demonstrated two imaging modalities: (i) shadow imaging for estimation of 3D object dimensions (on polystyrene beads and microorganisms) when the illumination angle is between 0° and 85°, and (ii) dark-field imaging, at >85° illumination angles. In dark-field mode, a 3-4 times drop in background intensity and contrast reversal similar to traditional dark-field imaging was observed, due to larger reflection intensities at those angles. With this modality, we were able to detect and analyze morphological features of bacteria and single-celled algae clusters.

摘要

我们首次展示了一种用于片上暗场显微镜和基于阴影的三维物体测量的无透镜斜照成像平台。它由一个LED点光源组成,该光源以0°至90°之间的角度照射一个500万像素、像素尺寸为1.4 µm的背照式CMOS传感器。分析物(聚苯乙烯珠、微生物和细胞)直接放置在传感器上并进行成像。该成像系统的空间分辨率在传感器的整个区域(3.6×2.73 mm)内受像素尺寸(约1.4 µm)限制。我们展示了两种成像模式:(i)当照明角度在0°至85°之间时,用于估计三维物体尺寸(对聚苯乙烯珠和微生物)的阴影成像;(ii)照明角度大于85°时的暗场成像。在暗场模式下,由于在这些角度处有更大的反射强度,观察到背景强度下降3至4倍,并且出现了与传统暗场成像类似的对比度反转。通过这种模式,我们能够检测和分析细菌和单细胞藻类聚集体的形态特征。

相似文献

1
Lensless, reflection-based dark-field microscopy (RDFM) on a CMOS chip.
Biomed Opt Express. 2020 Aug 10;11(9):4942-4959. doi: 10.1364/BOE.394615. eCollection 2020 Sep 1.
2
Lens-free optical tomographic microscope with a large imaging volume on a chip.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7296-301. doi: 10.1073/pnas.1015638108. Epub 2011 Apr 19.
3
Assessment of lateral resolution of single random phase encoded lensless imaging systems.
Opt Express. 2023 Mar 27;31(7):11213-11226. doi: 10.1364/OE.480591.
7
Lensless in-line holographic microscope with Talbot grating illumination.
Opt Lett. 2016 Jul 15;41(14):3157-60. doi: 10.1364/OL.41.003157.
8
A smartphone-based chip-scale microscope using ambient illumination.
Lab Chip. 2014 Aug 21;14(16):3056-63. doi: 10.1039/c4lc00523f.
9
Mask-modulated lensless imaging via translated structured illumination.
Opt Express. 2021 Apr 12;29(8):12491-12501. doi: 10.1364/OE.421228.
10
Adaptive super-resolution enabled on-chip contact microscopy.
Opt Express. 2021 Sep 27;29(20):31754-31766. doi: 10.1364/OE.435381.

引用本文的文献

1
On-Chip Polarization Light Microscopy.
Biosensors (Basel). 2025 Jan 30;15(2):79. doi: 10.3390/bios15020079.
3
Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors.
Bioengineering (Basel). 2024 Sep 12;11(9):912. doi: 10.3390/bioengineering11090912.

本文引用的文献

2
Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy.
Biomed Opt Express. 2019 Aug 2;10(9):4369-4380. doi: 10.1364/BOE.10.004369. eCollection 2019 Sep 1.
3
Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware.
Sci Rep. 2019 May 15;9(1):7457. doi: 10.1038/s41598-019-43845-9.
6
Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning.
Light Sci Appl. 2018 Dec 12;7:108. doi: 10.1038/s41377-018-0110-1. eCollection 2018.
7
Role of Extracellular Matrix in Development and Cancer Progression.
Int J Mol Sci. 2018 Oct 4;19(10):3028. doi: 10.3390/ijms19103028.
9
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy.
Sci Adv. 2017 Aug 11;3(8):e1700553. doi: 10.1126/sciadv.1700553. eCollection 2017 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验