Imanbekova Meruyert, Perumal Ayyappasamy Sudalaiyadum, Kheireddine Sara, Nicolau Dan V, Wachsmann-Hogiu Sebastian
Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
Equal contributions.
Biomed Opt Express. 2020 Aug 10;11(9):4942-4959. doi: 10.1364/BOE.394615. eCollection 2020 Sep 1.
We present for the first time a lens-free, oblique illumination imaging platform for on-sensor dark- field microscopy and shadow-based 3D object measurements. It consists of an LED point source that illuminates a 5-megapixel, 1.4 µm pixel size, back-illuminated CMOS sensor at angles between 0° and 90°. Analytes (polystyrene beads, microorganisms, and cells) were placed and imaged directly onto the sensor. The spatial resolution of this imaging system is limited by the pixel size (∼1.4 µm) over the whole area of the sensor (3.6×2.73 mm). We demonstrated two imaging modalities: (i) shadow imaging for estimation of 3D object dimensions (on polystyrene beads and microorganisms) when the illumination angle is between 0° and 85°, and (ii) dark-field imaging, at >85° illumination angles. In dark-field mode, a 3-4 times drop in background intensity and contrast reversal similar to traditional dark-field imaging was observed, due to larger reflection intensities at those angles. With this modality, we were able to detect and analyze morphological features of bacteria and single-celled algae clusters.
我们首次展示了一种用于片上暗场显微镜和基于阴影的三维物体测量的无透镜斜照成像平台。它由一个LED点光源组成,该光源以0°至90°之间的角度照射一个500万像素、像素尺寸为1.4 µm的背照式CMOS传感器。分析物(聚苯乙烯珠、微生物和细胞)直接放置在传感器上并进行成像。该成像系统的空间分辨率在传感器的整个区域(3.6×2.73 mm)内受像素尺寸(约1.4 µm)限制。我们展示了两种成像模式:(i)当照明角度在0°至85°之间时,用于估计三维物体尺寸(对聚苯乙烯珠和微生物)的阴影成像;(ii)照明角度大于85°时的暗场成像。在暗场模式下,由于在这些角度处有更大的反射强度,观察到背景强度下降3至4倍,并且出现了与传统暗场成像类似的对比度反转。通过这种模式,我们能够检测和分析细菌和单细胞藻类聚集体的形态特征。