Chizhov Anton V
Ioffe Institute, Politekhnicheskaya str., 26, St. Petersburg, Russia, 194021.
Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Torez pr., 44, St. Petersburg, Russia, 194223.
Biol Cybern. 2017 Dec;111(5-6):353-364. doi: 10.1007/s00422-017-0727-9. Epub 2017 Aug 17.
The conductance-based refractory density (CBRD) approach is an efficient tool for modeling interacting neuronal populations. The model describes the firing activity of a statistical ensemble of uncoupled Hodgkin-Huxley-like neurons, each receiving individual Gaussian noise and a common time-varying deterministic input. However, the approach requires experimental validation and extension to cases of distributed input signals (or input weights) among different neurons of such an ensemble. Here the CBRD model is verified by comparing with experimental data and then generalized for a lognormal (LN) distribution of the input weights. The model with equal weights is shown to reproduce efficiently the post-spike time histograms and the membrane voltage of experimental multiple trial response of single neurons to a step-wise current injection. The responses reveal a more rapid reaction of the firing-rate than voltage. Slow adaptive potassium channels strongly affected the shape of the responses. Next, a computationally efficient CBRD model is derived for a population with the LN input weight distribution and is compared with the original model with equal input weights. The analysis shows that the LN distribution: (1) provides a faster response, (2) eliminates oscillations, (3) leads to higher sensitivity to weak stimuli, and (4) increases the coefficient of variation of interspike intervals. In addition, a simplified firing-rate type model is tested, showing improved precision in the case of a LN distribution of weights. The CBRD approach is recommended for complex, biophysically detailed simulations of interacting neuronal populations, while the modified firing-rate type model is recommended for computationally reduced simulations.
基于电导的不应期密度(CBRD)方法是对相互作用的神经元群体进行建模的有效工具。该模型描述了一组非耦合的霍奇金 - 赫胥黎样神经元的放电活动,每个神经元都接收单独的高斯噪声和一个共同的时变确定性输入。然而,该方法需要实验验证,并扩展到这种群体中不同神经元之间分布式输入信号(或输入权重)的情况。在此,通过与实验数据比较来验证CBRD模型,然后将其推广到输入权重的对数正态(LN)分布情况。具有相等权重的模型被证明能够有效地重现单个神经元对逐步电流注入的实验多次试验响应的峰后时间直方图和膜电压。这些响应表明放电率的反应比电压更快。缓慢适应性钾通道强烈影响响应的形状。接下来,针对具有LN输入权重分布的群体推导了一个计算效率高的CBRD模型,并将其与具有相等输入权重的原始模型进行比较。分析表明,LN分布:(1)提供更快的响应,(2)消除振荡,(3)导致对弱刺激更高的敏感性,以及(4)增加峰间间隔的变异系数。此外,测试了一个简化的放电率类型模型,结果表明在权重为LN分布的情况下精度有所提高。对于相互作用的神经元群体的复杂生物物理详细模拟,推荐使用CBRD方法,而对于计算量减少的模拟,推荐使用改进的放电率类型模型。