Appelhans Timo, Busch Karin B
Mitochondrial Dynamics Group, School of Biology, University of Osnabrück, 49076, Osnabrück, Germany.
Institute of Molecular Cell Biology, School of Biology, Westfälische Wilhelms-University of Münster, 48149, Münster, Germany.
Biophys Rev. 2017 Aug;9(4):345-352. doi: 10.1007/s12551-017-0287-1. Epub 2017 Aug 17.
Mitochondria are cellular organelles with multifaceted tasks and thus composed of different sub-compartments. The inner mitochondrial membrane especially has a complex nano-architecture with cristae protruding into the matrix. Related to their function, the localization of mitochondrial membrane proteins is more or less restricted to specific sub-compartments. In contrast, it can be assumed that membrane proteins per se diffuse unimpeded through continuous membranes. Fluorescence recovery after photobleaching is a versatile technology used in mobility analyses to determine the mobile fraction of proteins, but it cannot provide data on subpopulations or on confined diffusion behavior. Fluorescence correlation spectroscopy is used to analyze single molecule diffusion, but no trajectory maps are obtained. Single particle tracking (SPT) technologies in live cells, such as tracking and localization microscopy (TALM), do provide nanotopic localization and mobility maps of mitochondrial proteins in situ. Molecules can be localized with a precision of between 10 and 20 nm, and single trajectories can be recorded and analyzed; this is sufficient to reveal significant differences in the spatio-temporal behavior of diverse mitochondrial proteins. Here, we compare diffusion coefficients obtained by these different technologies and discuss trajectory maps of diverse mitochondrial membrane proteins obtained by SPT/TALM. We show that membrane proteins in the outer membrane generally display unhindered diffusion, while the mobility of inner membrane proteins is restricted by the inner membrane architecture, resulting in significantly lower diffusion coefficients. Moreover, tracking analysis could discern proteins in the inner boundary membrane from proteins preferentially diffusing in cristae membranes, two sub-compartments of the inner mitochondrial membrane. Thus, by evaluating trajectory maps it is possible to assign proteins to different sub-compartments of the same membrane.
线粒体是具有多方面功能的细胞器,由不同的亚区室组成。线粒体内膜尤其具有复杂的纳米结构,嵴突入基质中。与其功能相关,线粒体膜蛋白的定位或多或少局限于特定的亚区室。相比之下,可以推测膜蛋白本身能在连续的膜中不受阻碍地扩散。光漂白后荧光恢复是一种用于迁移率分析以确定蛋白质可移动部分的通用技术,但它无法提供关于亚群或受限扩散行为的数据。荧光相关光谱用于分析单分子扩散,但无法获得轨迹图。活细胞中的单粒子追踪(SPT)技术,如追踪和定位显微镜(TALM),确实能原位提供线粒体蛋白的纳米级定位和迁移率图谱。分子定位精度可达10至20纳米,并且可以记录和分析单条轨迹;这足以揭示不同线粒体蛋白在时空行为上的显著差异。在这里,我们比较了通过这些不同技术获得的扩散系数,并讨论了通过SPT/TALM获得的不同线粒体膜蛋白的轨迹图。我们表明,外膜中的膜蛋白通常表现出不受阻碍的扩散,而内膜蛋白的迁移率受到内膜结构的限制,导致扩散系数显著降低。此外,追踪分析可以区分线粒体内膜两个亚区室——内边界膜中的蛋白和优先在嵴膜中扩散的蛋白。因此,通过评估轨迹图,可以将蛋白分配到同一膜的不同亚区室。