Suppr超能文献

具有玫瑰刺状结构的纳米纤维膜

Nanostructured Fibrous Membranes with Rose Spike-Like Architecture.

机构信息

Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

Nano Lett. 2017 Oct 11;17(10):6235-6240. doi: 10.1021/acs.nanolett.7b02929. Epub 2017 Sep 18.

Abstract

Nanoparticles have been used for engineering composite materials to improve the intrinsic properties and/or add functionalities to pristine polymers. The majority of the studies have focused on the incorporation of spherical nanoparticles within the composite fibers. Herein, we incorporate anisotropic branched-shaped zinc oxide (ZnO) nanoparticles into fibrous scaffolds fabricated by electrospinning. The addition of the branched particles resulted in their protrusion from fibers, mimicking the architecture of a rose stem. We demonstrated that the encapsulation of different-shape particles significantly influences the physicochemical and biological activities of the resultant composite scaffolds. In particular, the branched nanoparticles induced heterogeneous crystallization of the polymeric matrix and enhance the ultimate mechanical strain and strength. Moreover, the three-dimensional (3D) nature of the branched ZnO nanoparticles enhanced adhesion properties of the composite scaffolds to the tissues. In addition, the rose stem-like constructs offered excellent antibacterial activity, while supporting the growth of eukaryote cells.

摘要

纳米粒子已被用于工程复合材料,以改善固有性质和/或为原始聚合物添加功能。大多数研究都集中在将球形纳米粒子掺入复合纤维中。在此,我们将各向异性的支化氧化锌(ZnO)纳米粒子掺入静电纺丝制备的纤维支架中。支化粒子的加入导致其从纤维中突出,模拟了玫瑰茎的结构。我们证明了不同形状粒子的封装显著影响了所得复合支架的物理化学和生物学活性。特别是,支化纳米粒子诱导了聚合物基质的异质结晶,并提高了最终的机械应变和强度。此外,支化 ZnO 纳米粒子的三维(3D)性质增强了复合支架与组织的附着性能。此外,类似玫瑰茎的结构提供了极好的抗菌活性,同时支持真核细胞的生长。

相似文献

1
Nanostructured Fibrous Membranes with Rose Spike-Like Architecture.
Nano Lett. 2017 Oct 11;17(10):6235-6240. doi: 10.1021/acs.nanolett.7b02929. Epub 2017 Sep 18.
2
Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
J Mater Sci Mater Med. 2019 Apr 22;30(5):51. doi: 10.1007/s10856-019-6255-5.
6
Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute.
J Biomed Mater Res A. 2021 Oct;109(10):1812-1827. doi: 10.1002/jbm.a.37174. Epub 2021 Mar 25.
7
ZnO/Nanocarbons-Modified Fibrous Scaffolds for Stem Cell-Based Osteogenic Differentiation.
Small. 2020 Sep;16(38):e2003010. doi: 10.1002/smll.202003010. Epub 2020 Aug 19.
10
Nanostructured scaffold with biomimetic and antibacterial properties for wound healing produced by 'green electrospinning'.
Colloids Surf B Biointerfaces. 2018 Dec 1;172:233-243. doi: 10.1016/j.colsurfb.2018.08.039. Epub 2018 Aug 18.

引用本文的文献

1
Nanostructural insights into Mongolian medicine Harigabri and its therapeutic efficacy for gastrointestinal diseases.
Food Chem X. 2025 Jul 24;29:102838. doi: 10.1016/j.fochx.2025.102838. eCollection 2025 Jul.
2
Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications.
Bioact Mater. 2024 Sep 11;42:478-518. doi: 10.1016/j.bioactmat.2024.09.003. eCollection 2024 Dec.
4
Self-Therapeutic Nanomaterials: Applications in Biology and Medicine.
Mater Today (Kidlington). 2023 Jan-Feb;62:190-224. doi: 10.1016/j.mattod.2022.11.007. Epub 2022 Nov 29.
5
Multifunctional 3D platforms for rapid hemostasis and wound healing: Structural and functional prospects at biointerfaces.
Int J Bioprint. 2022 Nov 29;9(1):648. doi: 10.18063/ijb.v9i1.648. eCollection 2023.
6
Antibacterial Activity of Nanostructured Zinc Oxide Tetrapods.
Int J Mol Sci. 2023 Feb 8;24(4):3444. doi: 10.3390/ijms24043444.
8
Electrospun-Reinforced Suturable Biodegradable Artificial Cornea.
ACS Appl Bio Mater. 2022 Dec 19;5(12):5716-5727. doi: 10.1021/acsabm.2c00751. Epub 2022 Nov 23.
10
Tailoring micro/nano-fibers for biomedical applications.
Bioact Mater. 2022 Apr 25;19:328-347. doi: 10.1016/j.bioactmat.2022.04.016. eCollection 2023 Jan.

本文引用的文献

1
Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes.
J Immunol. 2016 Jun 1;196(11):4566-75. doi: 10.4049/jimmunol.1502373. Epub 2016 Apr 27.
2
Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.
Small. 2016 Apr 27;12(16):2130-45. doi: 10.1002/smll.201501798. Epub 2015 Dec 3.
4
Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing.
ACS Appl Mater Interfaces. 2015 Jul 8;7(26):14303-16. doi: 10.1021/acsami.5b02816. Epub 2015 Jun 26.
5
Influence of three-dimensional nanoparticle branching on the Young's modulus of nanocomposites: Effect of interface orientation.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6533-8. doi: 10.1073/pnas.1421644112. Epub 2015 May 13.
6
Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics.
Adv Mater. 2014 Sep 3;26(33):5823-30. doi: 10.1002/adma.201401537. Epub 2014 Jul 19.
8
A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers.
Adv Mater. 2013 Mar 6;25(9):1342-7. doi: 10.1002/adma.201203849. Epub 2012 Nov 29.
9
Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers.
Adv Mater. 2012 Nov 8;24(42):5676-80. doi: 10.1002/adma.201201780. Epub 2012 Aug 24.
10
Polymer nanocomposites: structure, interaction, and functionality.
Nanoscale. 2012 Mar 21;4(6):1919-38. doi: 10.1039/c2nr11442a. Epub 2012 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验