Suppr超能文献

在生理条件下,滚动的中性粒细胞在体内形成系链和吊索。

Rolling neutrophils form tethers and slings under physiologic conditions in vivo.

机构信息

La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.

Department of Physiology, Charite Universitatsmedizin, Berlin, Germany.

出版信息

J Leukoc Biol. 2018 Jan;103(1):67-70. doi: 10.1189/jlb.1AB0617-230R. Epub 2017 Dec 28.

Abstract

Human and mouse neutrophils are known to form tethers when rolling on selectins in vitro. Tethers are ∼0.2 μm thin, ∼5-10 μm-long structures behind rolling cells that can swing around to form slings that serve as self-adhesive substrates. Here, we developed a mouse intravital imaging method, where the neutrophil surface is labeled by injecting fluorescently labeled mAb to Ly-6G. Venules in the cremaster muscle of live mice were imaged at a high frame rate using a confocal microscope equipped with a fast resonant scanner. We observed 270 tethers (median length 3.5 μm) and 31 slings (median length 6.9 µm) on 186 neutrophils of 15 mice. Out of 199 tether break events, 123 were followed by immediate acceleration of the rolling cell, which shows that tethers are load-bearing structures in vivo. In venules with a high wall shear stress (WSS; > 12 dyn/cm ), median rolling velocity was higher (19 μm/s), and 43% of rolling neutrophils had visible tethers. In venules with WSS < 12 dyn/cm , only 26% of rolling neutrophils had visible tethers. We conclude that neutrophil tethers are commonly present and stabilize rolling in vivo.

摘要

已知人类和小鼠中性粒细胞在体外与选择素相互作用时会形成连接物。连接物是一种约 0.2μm 厚、约 5-10μm 长的结构,位于滚动细胞后面,可以摆动形成弹弓,作为自粘性的基质。在这里,我们开发了一种小鼠活体成像方法,通过注射荧光标记的抗 Ly-6G mAb 来标记中性粒细胞表面。使用配备快速共振扫描仪的共聚焦显微镜以高帧率对活体小鼠的提睾肌中的小静脉进行成像。我们观察到 15 只小鼠的 186 个中性粒细胞中有 270 个连接物(中位数长度为 3.5μm)和 31 个弹弓(中位数长度为 6.9μm)。在 199 个连接物断裂事件中,有 123 个事件紧接着滚动细胞立即加速,这表明连接物是体内的承重结构。在壁切应力(WSS;>12dyn/cm)较高的小静脉中,中位滚动速度较高(19μm/s),有 43%的滚动中性粒细胞可见连接物。在 WSS<12dyn/cm 的小静脉中,只有 26%的滚动中性粒细胞可见连接物。我们得出结论,中性粒细胞连接物在体内普遍存在并稳定滚动。

相似文献

1
Rolling neutrophils form tethers and slings under physiologic conditions in vivo.
J Leukoc Biol. 2018 Jan;103(1):67-70. doi: 10.1189/jlb.1AB0617-230R. Epub 2017 Dec 28.
2
Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings.
Mol Immunol. 2013 Aug;55(1):59-69. doi: 10.1016/j.molimm.2012.10.025. Epub 2012 Nov 9.
3
'Slings' enable neutrophil rolling at high shear.
Nature. 2012 Aug 16;488(7411):399-403. doi: 10.1038/nature11248.
5
Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo.
Microcirculation. 2002 Dec;9(6):523-36. doi: 10.1038/sj.mn.7800165.
7
Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13519-24. doi: 10.1073/pnas.0403608101. Epub 2004 Sep 7.
9
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation.
Cell Rep. 2017 Dec 26;21(13):3885-3899. doi: 10.1016/j.celrep.2017.11.099.
10
Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study.
Biophys J. 2007 Jan 15;92(2):418-29. doi: 10.1529/biophysj.105.078808. Epub 2006 Oct 27.

引用本文的文献

1
Monitoring Circulating Myeloid Cells in Peritonitis with an In Vivo Imaging Flow Cytometer.
Biomolecules. 2024 Jul 23;14(8):886. doi: 10.3390/biom14080886.
2
Nanoscopic Characterization of Cell Migration under Flow Using Optical and Electron Microscopy.
Anal Chem. 2023 Jan 10;95(3):1958-66. doi: 10.1021/acs.analchem.2c04222.
5
Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation.
J Leukoc Biol. 2022 Apr;111(4):771-791. doi: 10.1002/JLB.1A0720-471R. Epub 2021 Sep 8.
6
Visualization of integrin molecules by fluorescence imaging and techniques.
Biocell. 2021;45(2):229-257. doi: 10.32604/biocell.2021.014338. Epub 2021 Feb 19.
7
Biomechanics of Neutrophil Tethers.
Life (Basel). 2021 May 31;11(6):515. doi: 10.3390/life11060515.

本文引用的文献

2
Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings.
Mol Immunol. 2013 Aug;55(1):59-69. doi: 10.1016/j.molimm.2012.10.025. Epub 2012 Nov 9.
3
'Slings' enable neutrophil rolling at high shear.
Nature. 2012 Aug 16;488(7411):399-403. doi: 10.1038/nature11248.
4
Biomechanics of leukocyte rolling.
Biorheology. 2011;48(1):1-35. doi: 10.3233/BIR-2011-0579.
5
Dynamics of Microvillus Extension and Tether Formation in Rolling Leukocytes.
Cell Mol Bioeng. 2009;2(2):207-217. doi: 10.1007/s12195-009-0063-9.
6
Event-tracking model of adhesion identifies load-bearing bonds in rolling leukocytes.
Microcirculation. 2009 Feb;16(2):115-30. doi: 10.1080/10739680802462792. Epub 2008 Oct 16.
7
Getting to the site of inflammation: the leukocyte adhesion cascade updated.
Nat Rev Immunol. 2007 Sep;7(9):678-89. doi: 10.1038/nri2156.
8
Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13519-24. doi: 10.1073/pnas.0403608101. Epub 2004 Sep 7.
9
Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo.
Biophys J. 2003 Jul;85(1):637-45. doi: 10.1016/s0006-3495(03)74507-x.
10
L-selectin shedding regulates leukocyte recruitment.
J Exp Med. 2001 Apr 2;193(7):863-72. doi: 10.1084/jem.193.7.863.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验