Suppr超能文献

聚谷氨酰胺扩增的TATA结合蛋白在神经胶质细胞和神经元细胞中的协同毒性:对脊髓小脑共济失调17型的治疗意义

Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17.

作者信息

Yang Yang, Yang Su, Guo Jifeng, Cui Yiting, Tang Beisha, Li Xiao-Jiang, Li Shihua

机构信息

Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.

Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, and.

出版信息

J Neurosci. 2017 Sep 20;37(38):9101-9115. doi: 10.1523/JNEUROSCI.0111-17.2017. Epub 2017 Aug 18.

Abstract

Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment. Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both and evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment.

摘要

脊髓小脑共济失调17型(SCA17)由TATA结合蛋白(TBP)中的多聚谷氨酰胺(polyQ)重复序列扩增引起,属于一类神经退行性疾病,其中polyQ扩增导致大脑中神经元选择性丢失。尽管先前的研究表明,胶质细胞中polyQ扩增蛋白的表达可通过非细胞自主机制导致神经元损伤,但这些研究调查的是过表达转基因突变蛋白的动物模型。由于胶质细胞对过表达的突变蛋白特别敏感,因此研究内源性表达突变polyQ蛋白时胶质细胞功能障碍在神经退行性变中的作用非常重要。在本研究中,我们构建了两种条件性TBP-105Q基因敲入小鼠模型,它们分别在神经元或星形胶质细胞中内源性表达突变型TBP。我们发现,仅在神经元细胞或星形胶质细胞中表达突变型TBP只会引起轻度神经退行性变,而严重的神经元毒性则需要在神经元和胶质细胞中都表达突变型TBP。神经元和星形胶质细胞的共培养进一步证实,星形胶质细胞中的突变型TBP会促进神经元损伤。我们在表达突变型TBP的星形胶质细胞中鉴定出激活的炎症信号通路,并且阻断星形胶质细胞中的核因子κB(NF-κB)信号通路可改善神经退行性变。我们的结果表明,突变型TBP在神经元和胶质细胞中的协同毒性在SCA17发病机制中起关键作用,并且靶向胶质细胞炎症可能是SCA17治疗的一种潜在治疗方法。在SCA17患者中,具有多聚谷氨酰胺扩增的突变型TBP优先影响神经元的活力。支持和保护神经元的胶质细胞是否在SCA17的神经退行性变中起作用,目前大多仍未得到探索。在本研究中,我们提供了体内和体外证据,证明神经元和胶质细胞中突变型TBP的内源性表达会协同影响神经元的存活。过度激活的炎症信号通路,尤其是NF-κB通路,是胶质细胞介导的神经毒性的基础。此外,用小分子化学抑制剂阻断NF-κB活性可减轻这种神经毒性。我们的研究确定胶质细胞功能障碍是SCA17发病机制的重要组成部分,并建议靶向胶质细胞炎症作为SCA17治疗的一种潜在治疗方法。

相似文献

2
Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17.
Hum Mol Genet. 2009 Nov 1;18(21):4141-52. doi: 10.1093/hmg/ddp363. Epub 2009 Jul 30.
3
Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity.
J Biol Chem. 2008 Mar 28;283(13):8283-90. doi: 10.1074/jbc.M709674200. Epub 2008 Jan 24.
4
Molecular Mechanisms and Therapeutics for SCA17.
Neurotherapeutics. 2019 Oct;16(4):1097-1105. doi: 10.1007/s13311-019-00762-z.
6
Piperine ameliorates SCA17 neuropathology by reducing ER stress.
Mol Neurodegener. 2018 Jan 30;13(1):4. doi: 10.1186/s13024-018-0236-x.
7
Deactivation of TBP contributes to SCA17 pathogenesis.
Hum Mol Genet. 2014 Dec 20;23(25):6878-93. doi: 10.1093/hmg/ddu410. Epub 2014 Aug 7.
8
Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice.
Cell Rep. 2015 Oct 6;13(1):196-208. doi: 10.1016/j.celrep.2015.08.060. Epub 2015 Sep 17.
10
ERK activation precedes Purkinje cell loss in mice with Spinocerebellar ataxia type 17.
Neurosci Lett. 2020 Nov 1;738:135337. doi: 10.1016/j.neulet.2020.135337. Epub 2020 Aug 30.

引用本文的文献

1
Molecular Mechanisms of Spinocerebellar Ataxia Type 17.
Mol Neurobiol. 2025 May;62(5):5720-5729. doi: 10.1007/s12035-024-04645-z. Epub 2024 Nov 30.
3
Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases.
Front Cell Neurosci. 2022 Jun 30;16:852002. doi: 10.3389/fncel.2022.852002. eCollection 2022.
4
Genome-Wide Identification and Characterization of Genes in Reveals Their Potential Role in Trichome Development.
Front Genet. 2022 Jun 8;13:921096. doi: 10.3389/fgene.2022.921096. eCollection 2022.
5
Repeated neonatal sevoflurane induced neurocognitive impairment through NF-κB-mediated pyroptosis.
J Neuroinflammation. 2021 Aug 21;18(1):180. doi: 10.1186/s12974-021-02233-9.
6
Pathomechanism characterization and potential therapeutics identification for SCA3 targeting neuroinflammation.
Aging (Albany NY). 2020 Nov 10;12(23):23619-23646. doi: 10.18632/aging.103700.
7
Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion.
Front Neurosci. 2020 Jun 9;14:571. doi: 10.3389/fnins.2020.00571. eCollection 2020.
9
Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology.
J Clin Med. 2020 Mar 11;9(3):757. doi: 10.3390/jcm9030757.
10
PRRT2 frameshift mutation reduces its mRNA stability resulting loss of function in paroxysmal kinesigenic dyskinesia.
Biochem Biophys Res Commun. 2020 Feb 12;522(3):553-559. doi: 10.1016/j.bbrc.2019.11.025. Epub 2019 Nov 27.

本文引用的文献

1
CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease.
J Clin Invest. 2017 Jun 30;127(7):2719-2724. doi: 10.1172/JCI92087. Epub 2017 Jun 19.
2
DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1224-E1233. doi: 10.1073/pnas.1614893114. Epub 2017 Jan 30.
3
Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis.
Rare Dis. 2016 Aug 12;4(1):e1223580. doi: 10.1080/21675511.2016.1223580. eCollection 2016.
4
Genetically modified rodent models of SCA17.
J Neurosci Res. 2017 Aug;95(8):1540-1547. doi: 10.1002/jnr.23984. Epub 2016 Nov 18.
5
Capturing schizophrenia-like prodromal symptoms in a spinocerebellar ataxia-17 transgenic rat.
J Psychopharmacol. 2017 Apr;31(4):461-473. doi: 10.1177/0269881116675510. Epub 2016 Nov 10.
6
Glial Cells and Integrity of the Nervous System.
Adv Exp Med Biol. 2016;949:1-24. doi: 10.1007/978-3-319-40764-7_1.
8
αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease.
Hum Mol Genet. 2016 May 1;25(9):1677-89. doi: 10.1093/hmg/ddw028. Epub 2016 Feb 26.
9
Astrocyte calcium signaling: the third wave.
Nat Neurosci. 2016 Feb;19(2):182-9. doi: 10.1038/nn.4201.
10
Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice.
Cell Rep. 2015 Oct 6;13(1):196-208. doi: 10.1016/j.celrep.2015.08.060. Epub 2015 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验