Suppr超能文献

N-糖基化在真核分泌蛋白中引发双重选择压力。

N-glycosylation Triggers a Dual Selection Pressure in Eukaryotic Secretory Proteins.

机构信息

Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405, Buenos Aires, Argentina.

Universidad de Buenos Aires. CONICET. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), 1113, Buenos Aires, Argentina.

出版信息

Sci Rep. 2017 Aug 18;7(1):8788. doi: 10.1038/s41598-017-09173-6.

Abstract

Nearly one third of the eukaryotic proteome traverses the secretory pathway and most of these proteins are N-glycosylated in the lumen of the endoplasmic reticulum. N-glycans fulfill multiple structural and biological functions, and are crucial for productive folding of many glycoproteins. N-glycosylation involves the attachment of an oligosaccharide to selected asparagine residues in the sequence N-X-S/T (X ≠ P), a motif known as an N-glycosylation'sequon'. Mutations that create novel sequons can cause disease due to the destabilizing effect of a bulky N-glycan. Thus, an analogous process must have occurred during evolution, whenever ancestrally cytosolic proteins were recruited to the secretory pathway. Here, we show that during evolution N-glycosylation triggered a dual selection pressure on secretory pathway proteins: while sequons were positively selected in solvent exposed regions, they were almost completely eliminated from buried sites. This process is one of the sharpest evolutionary signatures of secretory pathway proteins, and was therefore critical for the evolution of an efficient secretory pathway.

摘要

真核生物蛋白质组的近三分之一穿过分泌途径,这些蛋白质中的大多数在内质网腔中发生 N-糖基化。N-聚糖具有多种结构和生物学功能,对于许多糖蛋白的有效折叠至关重要。N-糖基化涉及将寡糖连接到序列 N-X-S/T(X ≠ P)中的选定天冬酰胺残基上,该基序称为 N-糖基化“sequon”。由于大体积 N-聚糖的不稳定性,产生新 sequon 的突变会导致疾病。因此,每当祖先细胞质蛋白被招募到分泌途径时,在进化过程中就必然发生了类似的过程。在这里,我们表明,在进化过程中,N-糖基化对分泌途径蛋白施加了双重选择压力:尽管在溶剂暴露区域中,sequon 被正向选择,但它们几乎完全从埋藏部位中消除。这个过程是分泌途径蛋白最明显的进化特征之一,因此对于有效分泌途径的进化至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e8a/5562741/232f5cb3e3fa/41598_2017_9173_Fig1_HTML.jpg

相似文献

1
N-glycosylation Triggers a Dual Selection Pressure in Eukaryotic Secretory Proteins.
Sci Rep. 2017 Aug 18;7(1):8788. doi: 10.1038/s41598-017-09173-6.
2
N-linked protein glycosylation in the ER.
Biochim Biophys Acta. 2013 Nov;1833(11):2430-7. doi: 10.1016/j.bbamcr.2013.04.001. Epub 2013 Apr 10.
3
Darwinian selection for sites of Asn-linked glycosylation in phylogenetically disparate eukaryotes and viruses.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13421-6. doi: 10.1073/pnas.0905818106. Epub 2009 Jul 28.
4
Glycosylation of closely spaced acceptor sites in human glycoproteins.
J Cell Sci. 2013 Dec 1;126(Pt 23):5513-23. doi: 10.1242/jcs.139584. Epub 2013 Oct 8.
6
Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.
PLoS One. 2014 Jan 24;9(1):e86088. doi: 10.1371/journal.pone.0086088. eCollection 2014.
10
Quality control in the secretory assembly line.
Philos Trans R Soc Lond B Biol Sci. 2001 Feb 28;356(1406):147-50. doi: 10.1098/rstb.2000.0759.

引用本文的文献

1
Mechanical effect of protein glycosylation on BiP-mediated post-translational translocation and folding in the endoplasmic reticulum.
Biophys Rev. 2025 Apr 7;17(2):435-447. doi: 10.1007/s12551-025-01313-x. eCollection 2025 Apr.
2
N-Glycoproteomics of the Apicomplexan Parasite Toxoplasma gondii.
Proteomics. 2025 Apr;25(8):e202400239. doi: 10.1002/pmic.202400239. Epub 2025 Mar 12.
4
Regulated N-glycosylation controls chaperone function and receptor trafficking.
Science. 2024 Nov 8;386(6722):667-672. doi: 10.1126/science.adp7201. Epub 2024 Nov 7.
6
Uncovering a Latent Bioactive Interleukin-6 Glycoform.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411213. doi: 10.1002/anie.202411213. Epub 2024 Oct 24.
7
Acceptors stability modulates the efficiency of post-translational protein N-glycosylation.
FASEB J. 2024 Jul 15;38(13):e23782. doi: 10.1096/fj.202302267R.
8
Impacts of β-1, 3-N-acetylglucosaminyltransferases (B3GNTs) in human diseases.
Mol Biol Rep. 2024 Mar 29;51(1):476. doi: 10.1007/s11033-024-09405-9.
9
Structural basis for antibody recognition of the proximal MUC16 ectodomain.
J Ovarian Res. 2024 Feb 19;17(1):41. doi: 10.1186/s13048-024-01373-9.
10
N-glycosylation as a eukaryotic protective mechanism against protein aggregation.
Sci Adv. 2024 Feb 2;10(5):eadk8173. doi: 10.1126/sciadv.adk8173. Epub 2024 Jan 31.

本文引用的文献

1
Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP.
Structure. 2015 Dec 1;23(12):2191-2203. doi: 10.1016/j.str.2015.10.012. Epub 2015 Nov 19.
2
N-glycoprotein macroheterogeneity: biological implications and proteomic characterization.
Glycoconj J. 2016 Jun;33(3):359-76. doi: 10.1007/s10719-015-9641-3. Epub 2015 Dec 5.
3
A sweet code for glycoprotein folding.
FEBS Lett. 2015 Nov 14;589(22):3379-87. doi: 10.1016/j.febslet.2015.07.021. Epub 2015 Jul 28.
4
Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum.
Semin Cell Dev Biol. 2015 May;41:71-8. doi: 10.1016/j.semcdb.2014.11.005. Epub 2014 Nov 24.
5
Glycan regulation of ER-associated degradation through compartmentalization.
Semin Cell Dev Biol. 2015 May;41:99-109. doi: 10.1016/j.semcdb.2014.11.006. Epub 2014 Nov 24.
6
The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis.
Nat Chem Biol. 2014 Nov;10(11):902-10. doi: 10.1038/nchembio.1651. Epub 2014 Oct 17.
9
Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.
PLoS One. 2014 Jan 24;9(1):e86088. doi: 10.1371/journal.pone.0086088. eCollection 2014.
10
Protein folding in the endoplasmic reticulum.
Cold Spring Harb Perspect Biol. 2013 May 1;5(5):a013201. doi: 10.1101/cshperspect.a013201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验