Suppr超能文献

葡萄糖转运蛋白4缺乏的心脏在生理或病理应激反应下会发生适应性不良的肥大。

Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses.

作者信息

Wende Adam R, Kim Jaetaek, Holland William L, Wayment Benjamin E, O'Neill Brian T, Tuinei Joseph, Brahma Manoja K, Pepin Mark E, McCrory Mark A, Luptak Ivan, Halade Ganesh V, Litwin Sheldon E, Abel E Dale

机构信息

Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah;

Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1098-H1108. doi: 10.1152/ajpheart.00101.2017. Epub 2017 Aug 19.

Abstract

Pathological cardiac hypertrophy may be associated with reduced expression of glucose transporter 4 (GLUT4) in contrast to exercise-induced cardiac hypertrophy, where GLUT4 levels are increased. However, mice with cardiac-specific deletion of GLUT4 (G4H) have normal cardiac function in the unstressed state. This study tested the hypothesis that cardiac GLUT4 is required for myocardial adaptations to hemodynamic demands. G4H and control littermates were subjected to either a pathological model of left ventricular pressure overload [transverse aortic constriction (TAC)] or a physiological model of endurance exercise (swim training). As predicted after TAC, G4H mice developed significantly greater hypertrophy and more severe contractile dysfunction. Somewhat surprisingly, after exercise training, G4H mice developed increased fibrosis and apoptosis that was associated with dephosphorylation of the prosurvival kinase Akt in concert with an increase in protein levels of the upstream phosphatase protein phosphatase 2A (PP2A). Exercise has been shown to decrease levels of ceramide; G4H hearts failed to decrease myocardial ceramide in response to exercise. Furthermore, G4H hearts have reduced levels of the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1, lower carnitine palmitoyl-transferase activity, and reduced hydroxyacyl-CoA dehydrogenase activity. These basal changes may also contribute to the impaired ability of G4H hearts to adapt to hemodynamic stresses. In conclusion, GLUT4 is required for the maintenance of cardiac structure and function in response to physiological or pathological processes that increase energy demands, in part through secondary changes in mitochondrial metabolism and cellular stress survival pathways such as Akt. Glucose transporter 4 (GLUT4) is required for myocardial adaptations to exercise, and its absence accelerates heart dysfunction after pressure overload. The requirement for GLUT4 may extend beyond glucose uptake to include defects in mitochondrial metabolism and survival signaling pathways that develop in its absence. Therefore, GLUT4 is critical for responses to hemodynamic stresses.

摘要

与运动诱导的心脏肥大(其葡萄糖转运蛋白4(GLUT4)水平升高)相反,病理性心脏肥大可能与GLUT4表达降低有关。然而,心脏特异性缺失GLUT4(G4H)的小鼠在无应激状态下心脏功能正常。本研究检验了以下假设:心肌适应血流动力学需求需要心脏GLUT4。将G4H小鼠和对照同窝小鼠分别置于左心室压力超负荷的病理模型[主动脉缩窄(TAC)]或耐力运动的生理模型(游泳训练)中。正如TAC后所预测的,G4H小鼠出现了明显更大程度的肥大和更严重的收缩功能障碍。有点令人惊讶的是,运动训练后,G4H小鼠出现纤维化和细胞凋亡增加,这与促生存激酶Akt的去磷酸化以及上游磷酸酶蛋白磷酸酶2A(PP2A)蛋白水平的增加有关。已有研究表明运动可降低神经酰胺水平;G4H心脏对运动无反应,无法降低心肌神经酰胺水平。此外,G4H心脏中过氧化物酶体增殖物激活受体γ共激活因子-1转录共激活因子水平降低、肉碱棕榈酰转移酶活性降低以及羟酰基辅酶A脱氢酶活性降低。这些基础变化也可能导致G4H心脏适应血流动力学应激的能力受损。总之,GLUT4是维持心脏结构和功能以应对增加能量需求的生理或病理过程所必需的,部分是通过线粒体代谢和细胞应激生存途径(如Akt)的继发性变化实现的。葡萄糖转运蛋白4(GLUT4)是心肌适应运动所必需的,其缺失会加速压力超负荷后的心脏功能障碍。对GLUT4的需求可能不仅限于葡萄糖摄取,还包括其缺失时出现的线粒体代谢和生存信号通路缺陷。因此,GLUT4对于应对血流动力学应激至关重要。

相似文献

1
Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1098-H1108. doi: 10.1152/ajpheart.00101.2017. Epub 2017 Aug 19.
3
Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload.
Am J Physiol Heart Circ Physiol. 2018 Mar 1;314(3):H552-H562. doi: 10.1152/ajpheart.00212.2017. Epub 2017 Dec 1.
6
PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy.
Circ Res. 2011 Sep 16;109(7):783-93. doi: 10.1161/CIRCRESAHA.111.243964. Epub 2011 Jul 28.
8
Macrophage migration inhibitory factor antagonizes pressure overload-induced cardiac hypertrophy.
Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H282-93. doi: 10.1152/ajpheart.00595.2012. Epub 2012 Nov 9.
9
TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction.
Am J Physiol Heart Circ Physiol. 2020 Mar 1;318(3):H566-H580. doi: 10.1152/ajpheart.00739.2018. Epub 2020 Jan 24.

引用本文的文献

1
Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity.
Circ Res. 2025 May 23;136(11):1407-1432. doi: 10.1161/CIRCRESAHA.124.325614. Epub 2025 May 22.
2
Elevated meteorin-like protein from high-intensity interval training improves heart function via AMPK/HDAC4 pathway.
Genes Dis. 2023 Sep 14;11(6):101100. doi: 10.1016/j.gendis.2023.101100. eCollection 2024 Nov.
3
Insulin-Heart Axis: Bridging Physiology to Insulin Resistance.
Int J Mol Sci. 2024 Jul 31;25(15):8369. doi: 10.3390/ijms25158369.
4
Hypertensive Heart Disease: Mechanisms, Diagnosis and Treatment.
Rev Cardiovasc Med. 2024 Mar 6;25(3):93. doi: 10.31083/j.rcm2503093. eCollection 2024 Mar.
6
Proline metabolic reprogramming modulates cardiac remodeling induced by pressure overload in the heart.
Sci Adv. 2024 May 10;10(19):eadl3549. doi: 10.1126/sciadv.adl3549. Epub 2024 May 8.
7
TIGAR Deficiency Blunts Angiotensin-II-Induced Cardiac Hypertrophy in Mice.
Int J Mol Sci. 2024 Feb 19;25(4):2433. doi: 10.3390/ijms25042433.
8
p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice.
Arterioscler Thromb Vasc Biol. 2024 Apr;44(4):826-842. doi: 10.1161/ATVBAHA.123.319601. Epub 2024 Feb 8.
9
Metabolic adaptations in pressure overload hypertrophic heart.
Heart Fail Rev. 2024 Jan;29(1):95-111. doi: 10.1007/s10741-023-10353-y. Epub 2023 Sep 28.
10
Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload.
Physiol Rep. 2023 May;11(9):e15686. doi: 10.14814/phy2.15686.

本文引用的文献

1
The Failing Heart Relies on Ketone Bodies as a Fuel.
Circulation. 2016 Feb 23;133(8):698-705. doi: 10.1161/CIRCULATIONAHA.115.017355. Epub 2016 Jan 27.
2
Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure.
Circulation. 2016 Feb 23;133(8):706-16. doi: 10.1161/CIRCULATIONAHA.115.017545. Epub 2016 Jan 27.
3
Glucose Transporters in Cardiac Metabolism and Hypertrophy.
Compr Physiol. 2015 Dec 15;6(1):331-51. doi: 10.1002/cphy.c150016.
4
Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo.
Diabetes. 2015 Nov;64(11):3914-26. doi: 10.2337/db15-0244. Epub 2015 Aug 7.
5
Post-translational modifications of the cardiac proteome in diabetes and heart failure.
Proteomics Clin Appl. 2016 Jan;10(1):25-38. doi: 10.1002/prca.201500052. Epub 2015 Sep 14.
9
Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart.
F1000Prime Rep. 2014 Oct 1;6:90. doi: 10.12703/P6-90. eCollection 2014.
10
Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling.
Mol Metab. 2014 Aug 13;3(7):754-69. doi: 10.1016/j.molmet.2014.07.010. eCollection 2014 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验