Suppr超能文献

可变剪接的染色质和基因组决定因素

Chromatin and Genomic determinants of alternative splicing.

作者信息

Wang Kun, Cao Kan, Hannenhalli Sridhar

机构信息

Center for Bioinformatics and Computational Biology, University of Maryland.

Cell Biology Molecular Genetics, University of Maryland.

出版信息

ACM BCB. 2015 Sep;2015:345-354. doi: 10.1145/2808719.2808755.

Abstract

Alternative splicing significantly contributes to proteomic diversity and mis-regulation of splicing can cause diseases in human. Although both genomic and chromatin features have been shown to associate with splicing, the mechanisms by which various chromatin marks influence splicing is not clear for the most part. Moreover, it is not known whether the influence of specific genomic features on splicing is potentially modulated by the chromatin context. Here we report a deep neural network (DNN) model for predicting exon inclusion based on comprehensive genomic and chromatin features. Our analysis in three cell lines shows that, while both genomic and chromatin features can predict splicing to varying degrees, genomic features are the primary drivers of splicing, and the predictive power of chromatin features can largely be explained by their correlation with genomic features; chromatin features do not yield substantial independent contribution to splicing predictability. However, our model identified specific interactions between chromatin and genomic features suggesting that the effect of genomic elements may be modulated by chromatin context.

摘要

可变剪接对蛋白质组多样性有显著贡献,剪接失调会导致人类疾病。尽管基因组和染色质特征都已被证明与剪接相关,但在很大程度上,各种染色质标记影响剪接的机制尚不清楚。此外,尚不清楚特定基因组特征对剪接的影响是否可能受到染色质环境的调节。在此,我们报告了一种基于综合基因组和染色质特征预测外显子包含的深度神经网络(DNN)模型。我们在三种细胞系中的分析表明,虽然基因组和染色质特征都能不同程度地预测剪接,但基因组特征是剪接的主要驱动因素,染色质特征的预测能力在很大程度上可以通过它们与基因组特征的相关性来解释;染色质特征对剪接可预测性没有实质性的独立贡献。然而,我们的模型确定了染色质与基因组特征之间的特定相互作用,这表明基因组元件的作用可能受到染色质环境的调节。

相似文献

1
Chromatin and Genomic determinants of alternative splicing.
ACM BCB. 2015 Sep;2015:345-354. doi: 10.1145/2808719.2808755.
3
Connections between chromatin signatures and splicing.
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):77-91. doi: 10.1002/wrna.1142. Epub 2012 Oct 16.
4
Chromatin and alternative splicing.
Cold Spring Harb Symp Quant Biol. 2010;75:103-11. doi: 10.1101/sqb.2010.75.023. Epub 2011 Feb 2.
5
Epigenome-based splicing prediction using a recurrent neural network.
PLoS Comput Biol. 2020 Jun 25;16(6):e1008006. doi: 10.1371/journal.pcbi.1008006. eCollection 2020 Jun.
6
Predicting alternative splicing.
Methods Mol Biol. 2014;1126:411-23. doi: 10.1007/978-1-62703-980-2_28.
7
IChrom-Deep: An Attention-Based Deep Learning Model for Identifying Chromatin Interactions.
IEEE J Biomed Health Inform. 2023 Sep;27(9):4559-4568. doi: 10.1109/JBHI.2023.3292299. Epub 2023 Sep 6.
8
Predicting drug-target interaction network using deep learning model.
Comput Biol Chem. 2019 Jun;80:90-101. doi: 10.1016/j.compbiolchem.2019.03.016. Epub 2019 Mar 25.
9
Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.
Am J Hum Genet. 2006 Jan;78(1):63-77. doi: 10.1086/498853. Epub 2005 Nov 16.

引用本文的文献

1
Characterization of bovine (Bos taurus) imprinted genes from genomic to amino acid attributes by data mining approaches.
PLoS One. 2019 Jun 6;14(6):e0217813. doi: 10.1371/journal.pone.0217813. eCollection 2019.
3
Deep learning for computational biology.
Mol Syst Biol. 2016 Jul 29;12(7):878. doi: 10.15252/msb.20156651.

本文引用的文献

1
Translation initiation mediated by RNA looping.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1041-6. doi: 10.1073/pnas.1416883112. Epub 2015 Jan 12.
2
Predicting the human epigenome from DNA motifs.
Nat Methods. 2015 Mar;12(3):265-72, 7 p following 272. doi: 10.1038/nmeth.3065. Epub 2014 Sep 21.
3
Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms.
Nucleic Acids Res. 2014 Jan;42(2):701-13. doi: 10.1093/nar/gkt875. Epub 2013 Sep 29.
4
Emerging patterns of somatic mutations in cancer.
Nat Rev Genet. 2013 Oct;14(10):703-18. doi: 10.1038/nrg3539. Epub 2013 Sep 11.
5
Modeling exon expression using histone modifications.
PLoS One. 2013 Jun 25;8(6):e67448. doi: 10.1371/journal.pone.0067448. Print 2013.
6
Computational analysis of associations between alternative splicing and histone modifications.
FEBS Lett. 2013 Mar 1;587(5):516-21. doi: 10.1016/j.febslet.2013.01.032. Epub 2013 Jan 24.
7
Genome-wide association between DNA methylation and alternative splicing in an invertebrate.
BMC Genomics. 2012 Sep 15;13:480. doi: 10.1186/1471-2164-13-480.
8
Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing.
PLoS Genet. 2012;8(5):e1002717. doi: 10.1371/journal.pgen.1002717. Epub 2012 May 17.
9
Epigenetic features are significantly associated with alternative splicing.
BMC Genomics. 2012 Mar 29;13:123. doi: 10.1186/1471-2164-13-123.
10
Transcriptional robustness complements nonsense-mediated decay in humans.
PLoS Genet. 2011 Oct;7(10):e1002296. doi: 10.1371/journal.pgen.1002296. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验