Angermueller Christof, Pärnamaa Tanel, Parts Leopold, Stegle Oliver
European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
Department of Computer Science, University of Tartu, Tartu, Estonia Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
Mol Syst Biol. 2016 Jul 29;12(7):878. doi: 10.15252/msb.20156651.
Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology.
基因组学和成像技术的进步导致了来自大量样本的分子和细胞分析数据的爆炸式增长。生物数据维度和获取率的这种快速增长对传统分析策略提出了挑战。现代机器学习方法,如深度学习,有望利用非常大的数据集来发现其中隐藏的结构,并做出准确的预测。在这篇综述中,我们讨论了这类新型分析方法在调控基因组学和细胞成像中的应用。我们提供了深度学习是什么的背景知识,以及它能够成功应用以获得生物学见解的环境。除了介绍具体应用并提供实际使用技巧外,我们还强调了可能的陷阱和局限性,以指导计算生物学家何时以及如何充分利用这项新技术。