Suppr超能文献

用于先进柔性纳米复合热界面材料的垂直排列和相互连接的氮化硼纳米片。

Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials.

机构信息

Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, China.

College of Physics, Qingdao University , Qingdao 266071, China.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30909-30917. doi: 10.1021/acsami.7b08061. Epub 2017 Aug 29.

Abstract

The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.

摘要

在“超越摩尔”时代,半导体技术不断演进,现代电子设备的功率密度迅速增加,这都对先进的热界面材料(TIMs)提出了更高的要求。在这里,我们报告了一种构建用于先进热管理应用的柔性聚合物纳米复合材料 TIMs 的新策略。首先,通过静电纺丝制备了定向的聚乙烯醇(PVA)支撑和相互连接的二维氮化硼纳米片(BNNSs)复合纤维膜。然后,通过将 PVA/BNNS 复合纤维膜卷成圆柱状,并随后将聚二甲基硅氧烷(PDMS)真空辅助浸渍到多孔圆柱中,构建了纳米复合材料 TIMs。与原始 PDMS 相比,纳米复合材料 TIMs 在 BNNS 负载量低至 15.6vol%时,表现出超高的面内热导率增强,约为 10 倍,同时还表现出优异的电绝缘性能(即高体积电阻率)。通过捕获与纳米复合材料 TIMs 集成的工作 LED 芯片的表面温度变化,实际证实了纳米复合材料 TIMs 的出色热管理能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验